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and its applications
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Abstract. We reviewsomeaspectsof the theoryofoverdeterminedlinear systemsof
partial differential equations and useit to interpret somenon-linear equationsof

classicalfield theory as integrability conditions of linear one. In particular, iris
shownthat the Einsteinand the Yang-Millsequationsare equivalentto theexisten-
ce offlat connectionsin affine subspacesofconnectionsonsomeVectorbundles,Le.
theymay bewritten aszero-curvatureconditions.

1. INTRODUCTION

The interpretation of some non-linear field theoreticmodels [1, 2] in dimen-

sion 2 as integrability conditions of linear systemsand, more precisely,as zero
curvature conditions for family of connectionshas been very useful for the

analysis of these models.On the other hand some more realistic models such

as those described by Yang-Mills or Einsteinequationsdo presentthemselves

as the vanishing of certain covariant part of curvatures,it is thereforenatural

to try to interpret thesemodels also as integrability conditionsfor somelinear

systemsand one may even wonder whether they can be representedin some
sense as zero curvature conditions. We shall here report on some recentwork

on this subject [3, 4, 5. 6]. There is anotherevenmore natural reasonfor physi-

cists to study integrability conditions; namely it is well known that there are

(*) Laboratoiresassociésau C.N.R.S.
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troubles with some linear classical field equationsin external ljclds 7]. Iliese

troubles are connected with the non—integrability of these equationsbr gene-

ric external fields: there are however sonic configurationsof these external

fields for which the systems are integrabic. It is therefore useful to have an

algebraic way to produce the obstructions to integrability of systemsof partial

differential equations.This is one of thegoal of the formal or analytic I tIicor~

of overdetermineclsystems of partial differential equations [8] developed h’s

D.c. Spencer [9], D.G. Quillen [10], H. Goldschmidt [11, 12]. B. Malgrangc

[13. 14] and some other ones. In view of theapplicationswe have in mind we

shall only describeheresonic aspectsof that theory for linearsystems,the theorr

for non-linearsystems[121 is basically similar but with sometechnicalcomplica-

ti ous-

They key notion is the notion of formal iritegrabilitv. Tins is a very natural

notion: one tries to solve a system of partial differential equationsat order t

at sonic point (i.e. in the senseof Taylor expansionat order ~ at that poinu

and. roughly speaking,one says that such systemis formally integrablewhenever

there are no obstructionsto continuetile expansionfrom order~ to order Y 4 1 -

for any t and any point. If thesystemis a good scalarequationor more generalls
if one can solve the local Cauchy problem for it. theneverythingis O.K. andone

doesnot learnso muchwith such expansions.In sonicsensehowevertile converse

also works at the level of analytic equationsand solutions: i.e. roughly speaking.

if thesystem is formally integrablethe local Cauchyproblem. for non characte-

ristic data,is soluble (at theanalvtic level) [15].

The obstructions to formal integrabilit~ of a system essentially take their

values in sonic space of cohomology constructedwith tile symbol o1 the sys-

tem.

The appropriatelanguageto deal with Taylor expansionin a compactcoordi-

nate-freeway is the languageof jets [161: it is why we start with a section(sec-

tion 2) dealingwith differential operatorsandjet bundles.In section3, we define

linear equations and their prolongations in terms of jet bundlesand start to

discussthe notion of formal integrabihity. In section 4 ‘sve describethe relevant

cohomology of symbol in termsof finite dimensionalvector spaces.someexam-

plesof usefulsymbols aredescribedthere. Section5 givesthe relevantmtegrahilit~
criteria and descriptionof tile obstructionsto integrability. Sonic applicationsto

classical field theory connectedwith the motivations given at the beginning of

this introduction are describedin section 6: it is shown,in particular,that Yang-

—Mills and Einstein equations may he written as zero curvature conditions I at

theanalytic level).

When there are indices: we usc the Einsteinconvention of summingrepeated

up-down indices.
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2. DIFFERENTIAL OPERATORS AND JET BUNDLES

2.1.DEFINITIONS. Let E be a smooth vector bundle over B: tile spaceF(E) of

all smooth sectionsof F is naturally a module over the algebraC~(B) of all

smooth functions on B. Let F be anothersmoothvector bundle over B and let
us denoteby ~

0(E, F) the spaceof all homomorphismsof C~(B)-modulesfrom

17(E) in [‘(B). It is well known that for any L ~ ~0(E, F) thereis a uniquevector

bundle homomorphism p0(L) : E -s F for which we haveLs = p0(L) 05, for any

~ C 17(E), and that. L -÷ p0(L) allows to identify ~ F) with the spaceof all

vector bundle homomorphismsof F in F. Let 5~(E, F) be the spaceof all map-

pingsof 17(E) in [‘(F) which are linear for the underlyingvector spacestructures

(multiplication by constant functions on B): one may identify ~0(E, F) in

~(E, F) by

~J0(E,F) = {L EJ~(E,F)~Lof_fo L = 0, Vf C C~(B)}

where fE C~(B) is identified with the element of ~0(E, E) (resp. ~0(F. F)).

s —sf s • S C 17(E). (resp. s C [‘(F)). One definesinductively, for any integer

k ~ I. thespaces~k~’ F) by

~ E~(E,F)~L of—foL E

The elementsof ~~(L’, F) are called k-th order differential operatorsfrom E

in I’~.

If L e ~k(L, F) and V C ~ G) then one verifies that the coniposition

L’ a L = L’L is in ~k + 5(E. G). One also verifies, by induction on k, that if

L C ~ F) and if s E 17(E) vanishes on some open set ~ C B then

Ls C [‘(F) also vanisheson (7: thus the germ of Ls at b C B doesonly depend

on tile germ of s at b ~ B.

Let s and s’ be in 17(E) and b e B: we say that s and s’ agree to orderk at b

if their components in some local trivialisation have the same derivatives of

order ~ k with respect to sonic coordinatessystem at b. This is an equivalence
relation whicli doesnot dependon tile local trivialisation andon tile coordinates:

the quotient .Jhk(E) is tile set of k-jets of sectionsof E at b and we denoteby

j~: 17(E) —* .Jhk(E) tile canonicalprojection. bEB Jb.k(E) = J~(E)is a vector bundle

over B in a natural mannerand 1k : 17(E) ~ is a k-th order differential

operator:j~C ~k(E. Jk(E)). Jk(E) is the bundleof k-jetsof sectionsof E. The pair

(Jk J~(E))is characterized(up to an isomorphism of the appropriatecategory)

be tile following property.

2.2. PROPOSITION. (Universal properti’ of (jk,Jk)). For any L C ~k(E, F),

there is a uniquevector bundlehomomorphismfrom Jk(E) in F,
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1. I 7/~(.I~(L).li such that n~chare. 1 1. I ~5

I mrs. lust ,rs. for vector spaces. tIre earrorrie:rl bilinear ring of 1. x 1: ii:

s L, allows to replace bilinear maps from L
1 x L iii 1 H linear nmi:nps

F1 .: L1 iii 1. tIre p:ur 1JA~,15(L)) allows. for ‘sector bundies. to repl:rcc 4-tIn order

differential oper:rtors from F in F by vector bundleshomonnorplnsrusfrom ,/~i4

in l. fl~s proposition is of course an easy consequenceol tine delrniitrous. let irs

give sonic examplesof applications.

2.3. Examples

Fuiretorialiti ~ ,J~.Let cs be a vector bundle honioniorphisni of F inn /

i.e. cv C ~0)E. F): then j~ a is iii I/k(E. .ItF)) and 1yjk cc). which will be

denotedH .J~(aI is a vector huindle honiomorphismof .J5(L) in Oneverifies

thai. if ~ is a vector bundlehomoniorphisnìof F in (I. we liiae: “k ~ cvi ~ I~7I

c/Int

2. The canonicalprojections x~: Jk(E) .l~(F). (4 0.

if k ~ C j~C ~ (F ‘jc (F)) is also in i/~(E.,J~(E)). (since i/~)E. F) ~ ~/jL. 1~I

for k~ ft.

Then.Pk~~
5~which will he denoted by ir~.is nothing hut I/ic’ canonicalp101cc-

thou of .J~(E)on .1
5(E) obtained by oforgettingthe derivativesof order strietls

greaterthan (1

3. Prolongations. Let L be in ~/k(E. 4). ihen jc L is in ~ ~(E. .1~11’)).

it is called tire f-ti; prolongation of L . p~ If’ Lt is a vector bundle hornro-

morphism of ,J~~ (F) in which we denote by pr° I f~(LU and call the

Ct/i prolongation of pk(L I. pr°°)~) is clearly defined for any vector bLrildle

homomorphismof Jk(E) in F. (takeL = j~).Notice that, for 4 0.pr° lot

= .J~I a) correspondsto the first example.

4. The canonical inclusions “k JE) C .J~)./~)E)).If we take4 J~(1 -/114)

an the previous example, we obtain an injecfive vector bundle lroniomorpliisnr

(j 0j~I of J~ c(L) in Jç( Jf’L)) ~hirehr illo~s to niakc th~ idvritrfie horn
(El C .J~(J~(E))and finally to consider these bundles as suhvector bundles

I, +

of (.J~)
5- ~IF) =-.1

1(11L..).J1(L)) . . .)). With these identifications. nrc hare in;

I 1 ~ (1) ~ (1 = ~ 1~1)) fl I ~) ~)/ I) Jo, ann I I) ainnl f is it

is easily seen by tafing local coordinates.I eornniurtativitv of partial den’sativc’sI

2.4. PROPOSITION. Let ~k j’c dc’iio~ i/Ic 4-i/i .srFrriuret/in /00151 cr/i/ic cOisI/iCi/I
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bundle T* of B. Then SkT* a E is canonically a sub-vectorbundle of Jk(E)

tv//ic/n is thekernelof tine canonicalprojection 7T~ : J~,(E) ~— i(
4’)

in other wordswe havean exactsequence

OSkT* aE_~J~(E)—~~~k-l~~°’

indeedit is well known that derivativeof orderk at apoint b C B is a well defined

tensorial object wheneverthe derivatives of order lower than k vanish at b:

c(df~V. - ‘V dfkos)(b) =j((f
1—f1(b)Y. .(fk—fk(b))s), Vf ,fkEC~(B),

Vs C 17(E). In the following we shall make the identification Sk T* 0 E C Jk(E).

25. DEFINITION. Let L C ~k(E. F) be a k-th order differential operator, Then

the restriction to SkT* a E of pk(L) is a vector bundle homomorphism ak(L)

of S~(T*OF in F which is called the srmbol (or principal simbol) of L. For

the Q-th prolongation, it is easy to show that u,~.+ o L) takes its valuesin

S~T~® F(c J~(F)) amid that the corresponding homomorphism pr(
0(uk(L)).

(which we aslo denoteby a~~(L)).of Sk+ QT* 0 E in SQT* OF doesonly depend

on the homomorphismuk(L) of SkT* 0 E in F: pr(0(ak(fl) is thecomposition

of thecanonicalinclusion S~tT* ®E C SvT* 0 SkT* oF with

ldS2T*®~(L):ScT*0(SkT*®E)_sStT*®F,

prt~(ak(L)) is called the 2-th prolongation of ak(L) and pr~~~(cp)is defined for

any vector bundle homomorphism of S” T* ® E in F.

Let L C 2~’k(E.F) be a k-th order differential operator; then the kernel
kerpk(L) = pk(L)’(O) C J~,(E)is not automatically a sub-bundle of Jk(E) because

the dimension of kerpk(L) flJbk(E) may jump at somepoints b EB (although

it is upper-semi-continuous). L will be said to be regular whenever ker pk(L)

is a sub-bundleof Jk(E), i.e. wheneverb i-* dim (kerpk(L) flJb,k(.E’)) is constant,

(we always assumethat B is connected);L will be said to be completely regular

wheneverits prolongationsf’ o L are regular for any 2 ~ 0.

In the following, we shall only consider regular operators; this forbids, for

instance,an operator like x~~ + V(x) which is not regular in any neighbourhood

of theorigin x = 0 of IR’t.

2.6.Example

Let us recall that a connectionon thevector bundle E over B is a linear map-

ping, V :17(E)-sF(T* OF), satisfyingV(f’s)= dfos +f’ Vs, for anyfEC~(B)

and s C 17(E). It follows that s n-s [V,f] s = df®s is a C~(B)-modulehomomor-

pilism and that therefore, V is a l-tli order differential operator from F in T* 0 E;
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V C £“~(L, i~” 4 ). [he corresponding vector bundle liomoiniorphisnir

In)7 I : .J
1(F ) — T* a F is such that its restriction oi(V I to I ~ F C .I~(1:,I, lie.

the symbol of Vi, is the identity miiappinig of T~aF on itself ( :rnd this propert’s

of the symbol characterizesthe connectionsI Another ‘s’s a~to sa the sam.

thing consistsin sayingthatp~(V ) is a s,nlittiurg of the exactsechuenee

~

is an isomorphism and the canonical inclusion T* aF C ) correspondsto

T* .0 E tT* a~F) ~l ~ C (T* OF) + F. V is regular but generally not coniple-

tely regular. One extends V to fl ;\T*®E). i.e. to F-valued differential fornis

on B. (AT* = IR~T* ~ ... 0 A”T~). by V was = ~lw as + I H”w .\Vs Ion

anyp - form w C F) A~T *) and s C F (EL thus

V : F) .,YT~.0 E) F)A
1~‘ tT~0 El.

We have V2fs =V(df®s+~s)=—dfAVs + dfAVs+fV2s =fV2s. so

2 [‘(El [‘(A2 T~0 E) is of order zeroand thus of tile form s V 2s = f/s.
where ~2 is a 2-form with valuesin tile bundle End L I = F ®J7 * of endonior-

phisms of E. We have on F(A’T* O~) :V2~7=f2A~j. for 4C1(i\ 4*54)

with obvious notations).

12 C F) A 2 T* .0 End (E)) is called tIme cmtrn’atn,re of i/nc co,nlrvctionn V. Notnee

that ~ 2 : F IEI 11 A 2 T* OF) factorizes through the 2-th order partial cliff c-

rential operator j I o7 . F(L) —~ F(J
1(T~® F)). (i.e. the 1 -th prolongation of

7). amid a vector bundle homomorphism of J1(T*..eEl in ,~2 T* 04. mu spite

of the fact that ~ 2 turns out to be itself a vector bundle homomorphism.(pro-

duct by 12: of courseonehas ~~(17.A
2 T* aF) C ~2(17,,\2 T* OF)).

2.7. Coordinates

Let (“ C B be diffeomorphic to IR~and let is —‘ 1+ “I —. Iv” I he a

correspondingcoordimiatessystem on C . Then the restriction /7 C of F to

C is a triviahisable vector bundle. i.e. it is isoniorphinc to LU ~ 10. .X ll~/l

s’shere F
0 is a finite dimensiomial vector spacewith dnni I ~0 I = ranktL I. I hns

elements ‘c of F (1 are represented, in such Irivialisaticnrn. is\ pairs1 4. v”

x IR~and tire bundle projection correspondsto I ~‘ 0) ~ (orrespomn-

ci ugly, ~ C, is isomorphic to ~ ~ cc 1;) x IL” anal tine assoei;e

ted coordinates :rre 1 4 0, 4 . 4.v” I where

~ .~the ~ C L0 :rne completely symmetric in tile indices p p,,, f
0 C inn C 4 1. If y

0 ~ 4Lv) representsa local section.s of F I’ . then the ernoali-

n rtcs of f’s it h — (s ‘ I arc ~i’sLml b’s n- — n n-1’s1 I) iii /

s’s Irene ii = d~av’”are the partial derivatives The tsro.Ieeticln ~‘ .J~117) --~.1)1 I



THE THEORY 01’ OVERDETERMINED LINEAR SYSTEMS. ETC. 145

(f ~ k) corresponds(on (C) to tile canonical projections

n~C,x~) ~ . . ,n~i,xi~)
of

Srn(IRP~)*OF0) x lR’~ onto (m ~ Srn(~)* OF0) x IR~.

If F is another vector bundle over B with trivialisation over (9, F (9 F0 x

x (C F0 x IR~,and if L C ~k(E, F) is a partial differential operator, then L
m

is represented over (C by L = ~ a’~’’M°~(x)~ , . . , where the “i Pm(X)

,n0 Mi Mmare linear mappings of F0 in F0 (i.e. elements of F0 ®E~’); pk(L) :Jk(E) --s F

m=k M1~Mm
correspondsto the mapping (r,Ii k k ~ i~,x~)—s( ~ a (x)rIi,,1 . ~ ,x ),

m—O 1
and the symbol ak(L) is representedby themap

(~ .x~)v-s(aMI Mk(x) ~ ,x~)

Mi-Mk lui.-Mk

from (Sk(lRhT)* OF0)x JR’
t in F

0 x IR’t.
In the previous example of a connection V on E, F is T* OF so, in the above

coordinates, T* oE~’ (C ea(Rfl)* ®E0x IR’~ and elements of T* ®E1’ (C are

representedby (cii, x
M) where np,, are n elementsof F

0. Since a1(V) is the identity

mappingof T* OF, it correspondsto(r,hi , x’~)n-s (~,,xM), sop1(V) :J1(E) —s T* OF

is of tile form (n,li~,~, x~) i—s (r~i,+ A(x) ~, x~)where A(x) are endomorphisms

of F0. Thus if x —s r~i(Y)represents a local section s of E on (C, V s is represented

by x n—s ~~n,Li()+ A0(x) ~Li(x) in these coordinates. Furthermore the curvature

12 of V correspondsto tile 2-form F~(x)dx
0 A dx where

= 3,,A,(x)— a,A~(x)+ [A~(x), A,,(x)].

3. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

3.1. DEFINITIONS. Let F be a smiiooth vector bundle over B. A regular k-th order

linear partial differential equation on F is a smooth sub-vectorbrindle R of

a (local) solutioum of R is a (local) sections of E such that
1k5 is a (local)

sectionof R.

Let 4’ be anothervector bundleover B and let L C ~k(E, F) be regular; then

kerpk(L) is a regular k-th order equation on F and s C 17(E) is a solution of

kerpk(L)iff’Ls=O.

Now if R is a regular k-tb orderequationon F, then Jk(E)/R is well defined

as vector bundle over B and, if r : Jk(E) —sJk(E)/R is the canonical projection,
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then r j~ is in
1/f’L.J~(FIJ/) ‘sOth ker~r

5Ir’/t) 1/andill ‘J1)L~In nssnieln

that kcrp~I1I — 1/.! factoriLed through r ‘j~ and :nnn Insieeti’sc ‘ss’efon bsrncllc

honromortshism J~(/7)1/ 1’. ] bus it is clear that if ii Len /r~)! I. tlnemc

~ kenp1 ,11 LI (CJ1 - ,(17)) clues cnnls clepenccl urn Ii. inc act ‘s’ss’ bna’se:

R~
5_i~(R)n1~n- f’j~ Inc .If’Jf’EII)

F1 n is called i/ic f-i/n proion~atioinof 1/ it is gersenahl~not a sub-bundleof .I~ .1/. I

but only a faniiiiy of subspacesof ~ + (Fl over B. When, for all inntegers I. ‘ 0.
~ is a ‘sector bundle overB. the equations1/ is said to be cuuip/c is Ii’ ~ cnn/ni,

3.2. Notationsand remarks

One niay def’inie a (non—regular) 4—th orderlinear tsartial slit ferential eqLE1—

lion on F to be a fain/In’ of’ subs~rac’e.s01.1
1(F) over B: by tins ‘s’s e meana subset

1/ of .I~ (F) ‘s’shich containsthe zero sectnonof .I~(E)ansI ‘s’s lOch is suchn that. ton

~rn~ is C B. Rh — R (“~‘
1h.k~4I is a linear sutsspaceof i~,~(1 1 ..-\ (local) solutions

of F is again in (local) section.s of F satisfyingi~s ER
1,. for ii ~ 13 (in its domainL

Thins if R is ak-th order regularequation,thensR
15) is a (4 -~- f 1-tic orderequations

whlich is generally non-regular but which has tile sanne(local) solutions as Ii.

2. If L E ~k(E. 1-’) is a differential operator, we shall speakof othe equation

Ls = 0,, to denote the equation kerp~(L).One must be aware that different

differential operatorseventuallycorrespondto thesameequation.

3. It follows froni the definition that, if B is a k-tic order linear equation

on F, we have ~k+ + ‘~(R(5+ Pit)) C R (5), Vf. in ~ 0, hut, in general. x~ + /0

is not surjective froni R + ~ to B ~ (i.e. the inclusion may be strict). I lIce

nsext definition will avoid this non-surjectivity).

3.3. DEFINITION. A regular ,&-th order linear partial differential equation R

on F is said to be j7rrnmallr’ inregrahie if it is completely regular and if for any

a 0 im~f’~~+ induces a surjective map of R ~ ~ on R (5), (i.e.
7f’ + + ‘(R’

5 In
1....

= R IA))

The origin of this terminology is the following. Let h he a point of B(b C B I

arid let us try to solve R by Taylor expansionat b. We nia~identify R, ‘s’s ith

the set of coefficientsof Taylor expansionsto order 4 + f satsifying B to the

corresponding order at b: indeed if s is a local section of F around in wntli

j~+ 55 C R~
51,thiens s satisfiesB modrnlo sectionsvanishing to order I~~ f + I

at b. But in order that eachelemenitu of could he initerpretedas tire 1 asIon

expansions to order 4 + f of souse local solsntion ,r rnne Inas to :nssnnnccc’ that
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there is a ~ C R~5 1) correspoisdiisgto Taylor expansionsto order k + 2 + 1 of

s. so since ~ I ojk’~~ I =

1k±~,such that ~k+s+ ü = is. Thus, apart froisi

constlete regularity whicls is natural in the franseworkof Taylor expansions.

formal integrabilitv is just the conditions neededto formally sol’s’e at any order

tise equationsat b by starting from anyelemenstof R~
0and this for any 2 ~ 0 amid

anyb C B.
Let B be a k-th order linear equation on F and supposethat R is formally

integrable;this meansthat, given 2 ~ 0, b C B and u C R
1~),thereareno algebraic

obstructionsto theexistenceof a solution s of R in a neighbourhood of b satisfy-

ing 1k + ~s = u. Unfortunately, it is not always the case (although this is often

true) at the <<smooth level>>. This is, however, true at the <<analytic level>> as one

may guess. (it is a consequenceof Cartan- Kähler theorem). Let us make this

precise. If B is an analytic manifold andL’ is an analytic vector bundle over B,

a k-tb order linear equation R on E is said to be analytic if R is an analyticsub-

vector bundle of Jk(E); an analytic (local) solution of R is an analytic (local)

section of F which is solution of R. With this terminology the result is the fol-

lowing [Ill.

3.4. THEOREM. Let R be a formally integrable analytic k-th order linear equa-

loin. Timen, for any integer 2 ~ 0, for anc’ b CB and for any u CR~c),there is

a local anali’tic solution s of R in a neighbourhood of b for which we have:

j:+ 5~ = u.

3.5. DEFINITION. Let R be a k-tb order linear partial differential equation.Then

A
T = R n St T* 0 F is called the st’nmbol of R; it is a family of subspacesofSkT* 0E(CJ~(E)) over B. Notice that if R = kerpk(L), for L C

then A’ = ker ok(L). The symbol A’15’~ of R~ does only depend on A’ since

we have ,>V~5’~= SA’T* ® .~r’n St + d’j’* .0E, as easily seen; A05~ is called the 2-

tim proloumgationof A’.

We shall see that the obstructions to the fornial integrability of R take their

values in a family of spacesover B which doesonly dependon A’.

3.6. PROPOSITION. [101 Let B be a regular k-tim order linear equation on E.

Them, br’ using the ca,nouical inclusion Jk(E) C J~,
1(J~,,1(E)).1 ~ on ~ k, R

mat’ he consideredas a regular in—tin order linear equation on ~k,’t (E),’ its 2-

-tin p,’olongatiomm is again B (5) considered as a (2 + m)-ordei’ equation on

01(E), (by using i1 f’E) C ~ + ~ (17))). Furthermore, for airy sobstion

s of B as k-tim order equation0mm E. j~’t’s is solution of R as inn-tin order equa-

tb/i our ~k—,n (E) and co,mm’em-selm’, [‘on’ann’ soimutioum ~‘ of R as ni-tin order equatio;r
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u/n ..f~.,,(L’), tbne;’c is’ a .s’oiri tioun .< of B a.s k-i/i order equation con F for rn/nd/n
= .s. This propositions ahloss’s to replcrecan eqrnatiomsby a f’irsl order<rIse:

it is, irs fact,a very old trick and it is easyto prose.

Aniothereasyusefulresnnlt is tlse following [1 11.

3.7 . PROPOSITION. Let B be a regular k—tin om’dem’ linea,’ ec/n/at/omnaurd snnp/nosc

dnat its 2-tim prolongation, B ~ is also regular. T/neim weinane: (1/ (5) )~1’1n = B (5 ‘

3.8. Example

Let V be a conisectionon the vector bundle 17 over B. (see ins 2.6). aisst let

ms consider use regular l-th order hinsear equation B = ken hnt)V) ons F. ]‘hc
(local) solutions of F are the (local) sectionss of 17 satisfyinsg V’s = 0. threv are

called /morn’:ontal (local) sectmonsoJ’4’ br V. Siisce un)V I is tire islenstity nrapping

of T
5 ® F on itself, (see in 2.6). it follows thrat tire symbol .\ of B is tire zero

sectioms of T* 0 F: .\‘ = 0. This implies that the synshol ,\‘( 0 of tire 2-th prolons-

gation B IA) of R alsovanishes:A’1 sn = 0. It f’ohlows that ir~‘ inrdrnccsans inljecti~e

nsappingof’ R ~ ins B15~1for anss 2 ~- I. (\‘( 0 = 0 B1<1
11n~- I)): Ion 2 = U.

insducesa bijection of B oil 4’ (simice it is surjectiveas it follows from 2.6). Ins

order that induces, for aisy 2 ~ 0. a surjective (and thceref’ore bijective)

niappimsg of R (A + II on R (5> it is therefore necessaryand sufficient thrat ~

induces, for any 2 ~ 0, a surjectionof B(<> on F: ~ n- is threns an isomomorphism
of B>

5> on F and B4 5) is regular. Thus 1/ is formally iirtegrahic if and onsls if

SLice s -s LZs factorizes througlr ,> ._+j~o Vs and a hundie honionsorphism.nt

follo’svs that ir~(R.1)) is contained ins (it is in f’act equal to) tire subset

(CE 12 = O~ of E: so ir~(R>~)= E implies 12 = 0. Thus in order that B

he fornsally integrable it is necessarythrat 12 vanishes. Tins is also sufficient

because,as it is well known, if 12 = 0 then F adniits around any point of 13

local triviahsatiomis 4’ (C x (C mi wlricir 7 correshsonrdsto tire mnsuah diffe-

renstial of vector valued functions so. ins threse triviahisationss,tire hrorizonstahsee-

tions are the constantE
0-valued funsctionson (1’, This aLo sisows that, irs this

case.formal integrabihty insplies local resoluhility ins the sense of tiseorenir3.4

but without any analyticityassumption.

In sonic sense, formal integrability of linsear equations are geiseralisations

of zero curvature conditions and it is useful to knsowis s’s’lrems ansons-hinearpartial

differenstial equatiois is exactly the formal integrahility conditions of a hinrcar

one becausetheis its properties rely to propertiesof tire correspoischinglrrrcar

system. We shall see thsat Einsteins equatiomssansd Yang—Mills equationssan’e icons—

—hnear equations of this type. Furthernsorewe shall slrow tirat pure Linsteirs
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equations aisd pure Yang-Mills equationss nsay be written as zero-curvature con-

ditioiss for connectionson appropriate vector buisdies.

3.9. DEFINITION. Let Nc SkT* ®E be a family of subspacesof S>~’T* OF over
B, (see 3.2); N will be called imommmogeneousif, for any pair (b, b’) of elements

of B, there is (at last one) au isomorphism of vector spacesof on ansd

(at last one) an isoniorphisnsof vector spacesof Fb on 4’b such that the cor-

respondig isomorphismof S~’~7,*®Eb on SkT~OFb inducesan isomorphismof
on Nb; it then follows that the corresponding isomorphism of S’< + 0 Fb ~

Sk’~’<7~OFb induces ans isomorphism of ~ on N~1,for any 2 ~ 0, where

= SQT* ON~ 5/5+ AT* ®E, All the equations that will be considered in

this paper have homogeneoussymbol which implies, ins particular, that the N~<1

are vector sub-bundlesof the S~’<‘ A’T* 0 E(2 ~i 0)

4. COMOLOGY OF SYMBOLS

4,1 In the section we describespacesassociatedwith symbols which will be

useful for the aisalysis of fornsal iistegrabihty of linear parital differential equa-

tions on F. Sinsce tile constructionsare pointwise on B. i.e. are carried over

cads point b C B, it will be conveisientto drop the label b and to consider that

T, T*, E etc. , . . are fixed finite dimensionsal vector spaceswhich will be later

the fibres of (the corresporsdinsg)vector bundles over a point b EB. Thus now

T aisd F are finite dirneussionsal vector spacesansd we call F-valued k-symbol on

T or simply k-symbolwhen no confusionsarisesa linear subspaceN of S~<T* 0 F

wisere SkT* 0 17 is the spaceof synsmetric k-linear maps of T” in F. Tile 2-tb
prolongation ~ of N is the space of symmetric (k + 2)-linsear maps

TA + 5 -+ F, (i.e. ~i C Sk + ST* OF), suchthat

(vi,..., l:)k) n-s 1.1 (ui...., vk~0/5+ 1~,,, 0/54, ~)

is ais elensentof N for ansy 0/5 + 0/5 +
5ET. In other words we have, (com-

pare with 3.5):

N
t5~=SST*.0NnS~AT* ®E.

A’~51is a (k + 2)-synssbolauscl we have(,\~(5))Inr) = Ntm + m)

4.2 Let us definselinearnsaps[9]

b:A5T*OSST*-sAt+1T*®SS1T*

by ~(w
1 A... A sa~.0(w)

5) = wA w
1 A... A ~ ®~w)~—

1for r~ 1. We write

ö(AST*) = 0 for r = 0 and. nsore generally, we make tire convenstionSST* = 0
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f’or r �~I . (s ~ 01. We dearly irave 6 2 = 0 so tire sequences

~ \.\7”A ..yry’+~

areeonsrplexesof vectorspaces.By tensorproductwitir F. we obtains tire conrplexes

~ .\nT* ‘:S
57’~’..:F..-~

4.3. LEMMA. Tine cibon’e seque;mccsare ftYacl for r + s ~ 1, i.e. Inn (6) = Kcr (6 I

‘[‘isis is the fornsal Poinicarélemma I’or Taylor expanssionsat the origini of I of

F-’s’aluesh dift’erenstial forms ons ‘1’. Indeed inns element of .\S

7’* < SIT* ~ F is

canonsicahlya F-valueds-form on T which is hromogenieousof degreer as functnois

ons 7’, tire operator 6 correspondsto thse exterior differenstnal. Snnce the usual

hronsotopyof forms corresponidingto dilatationi of T preservestire homogenienty.

it provides a honsotopy for tIre abovesequences.

Tire s-formic on T corresponsdingto Wn A .‘. A cc, ST (cc)’ is

[cc (x)]
T

wA...Aw.
1’

4.4. DEFINITIONS. Let A’ be a F-valued Ic-symbol on T. We Isave by definitions

6 l(T* 0 N) = Nhhi and tiserefore 6 I(T* ® \7(A)) = ~>st i~C SA + 5+ 1 T~04’

This implies in particular that we have 6) i’s.ST* 0 ~\r(Ln) C ,\S i T~® \(A in

(by conventionATI~>= N). for 2 ~ I . The Spencer[9] cohonmologt’of A’ is tise

cohomologyof the sequences.(called 6-sequencesofN).

0 ~N~51 ~,. T~®A~5~~ .,, A~T~®,\7(A—S) ~ ,, ~ A5T~®,\’

~ A54, i T~®

5k-i T* 04’,

The cohomology at AST* ®\T(5s1 of above sequencewill he denoted by

HS’s’<’ l.S(N);thus

H
5’t(N) = {~C AST* ~<(r—1) ~= 0}/6(A~’1T* .\Or))

are defined for r ~ I and s ~ U.N is said to be p-acychic if JI”t(A’) = 0 for

0 ‘~s~p, r ~‘ I; it is said to be inr’olutin’e if 1F~(N)= 0 for anys 4i 0 andr 2” 1

(i.e. if it is dim (7”j-acyshc).

4.5 . PROPOSITION. Let A’ be a 17-valuedk-sr’mbol wm T and on be an integer

witin 1 ~ on ~ 4. Timeum, by using tine canonical imnclusiomm

~k T* c
5m T* 5k~mT* OF ,\‘ man’ be considered as a ~A’/m1 T* F-ma/rued

nm-sr’mbolomm T: its 2-tim prolongation is again A’~5) consideredas a 55 ~PiZ T* :.:~
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-valued (in + 2)-symbol on T, (by using S~QT* C
51fl + ST* 0 S~’”T*), Fur-

thnermore time Spencercohomologyof A is time sameas theSpencercohornologn’

ofA’ consideredas a Sk’-nr T* ® F-valuedrn-symbolon T.

This proposition follows easily fronis tise definititions. The first part is the

<<symbolic>>counterpartof proposition3.6.

4.6. Remarks

1. One must be aware of the fact that, if AT is a k-symbol, there is a shift of

k — 1 in r in our definition of HrS(N) with respect to the one of other authors,

the last proposition is thevery reasonfor ourconvention.

2. It in’nmediately follows from the definitions that we have H”°(N) = U

andH’~
1(N) = 0, i.e. any symbol is 1-acychic.

3. WehaveHT5(N(S))=H5’~Ss(N)foransyr~1 ands~0.

4. Up to now, if N is a k-symbol, H’~~(N)are definedonly for r2” 1, it will

be convenieistin the following to defineH°’P(N)as thecohomologyof

AP_tT*ON~APT*0S1T*OE_~AP+1T*OSk_2T*®E

17 for k=l

forp~ land H°’°(N)=

0 for k~2

Acychicity andinrvolutivity still referto theH’~S(AI) for r ~ 1.

4.7. DEFINITION. [17] Let (e
1,...,e ,~) Lne an ordered basis of T. For any

F c S~T* OF, we denote by I~,,= ~ .5,,,) the set of ~i CF such that

(115 = o, Vs ~ rum. (e1, e,,) is said to be quasi-tegular fo,’

N (C SkT*®F) if dim N~= ~ dim Ac,n + dim N; this is equivalent to say

that the maps AT,~,’) I/I + I\~ are surjective for 0 ~ on ~ mm — 1, (where

(ö~,~) (v~. . . oh,) = ~(C,rn~ vi,..., 0/5)). i.e. thatwe haveexactsequences

0 \O1) ~ ~‘(1I .±~2iI~÷\~ Q.
7/I + 1 iii 771

4.8. LEMMA. J,f (e1. ~) is qnsasi-regular for A’, tinemn it is quasi-regularfor

A’
t5~,(eQ ~ 0). Proofby inductions.
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4.9. THEOREM. [i 7] A’ is iunn’oimutin’c if airs] omilr if ii /na.s a c~niasi-rc’gnrlar/nasd

lice proof tirat existenceof a quasi—negmnlarbasis insspliesinsvolutivitv is easy,

by usnnsg iensrma 4A. The proof of tire corsversein nrrore difficult. By nsmnlg tins

tiseorens,onse proves.

4 .10. THEOREM, [1 0] Let .\‘ be us abon’e: theu’e i.s air inn tc’gs’r p (~U) c1c’~ic’irs/—

Org onnln’ OmI k ) = ou’der of N). un = dnnss T and dun £ such that .\‘ °~is inin’oinm tin’s’.

i.e. sue/i timat we inane

H5”).\”)=O, Vr~p+l. (VsoO).

4.11. Remark

Let at’ densote the partial derivativesof order 4 ons T with respectto vector

basis: if f’ is a snsooth F-valued funsctions ons T, tiren 0 f’).v I is f’or ans x C 7

au element of S~T* w 17. Conrsider.f’or aF-valuedk-symhoi .\ ons 7’. tire cquatioir

0t’f(.Y) C A-’. Vx C T

Thens A’> ~ nsay be idenstified to theset of solutions of I ~g\,1 winch are honroge-
neous polynsomials of degree k + 2: tlrerefore Al’ T4, .0 A’>5> corresisondsto F-

—vahued p-forms oni 7’ with isonsogeneouscoefficients of degree 4 + 2 satisfvinrg

~y) and 6 corresponsdsto tueusualexterior differential. Tisus -~- 1i~’’(.\I is the

colsomology of L’-valued differential fornsss on T the coef’ficiensts of whicir :rne
polynomialsof order4 (ansiof arbitrary degrees)satisfying I

4.12. Examples

ins all these exansples(en I p = (I ur ) is a basis of 7’. tire denote tine

partial derivatives 0/0.v5 at the ponnst .5’ = .Y~e<, C T ansd we identify tenrsoniai

objects on T. T* with their consponentswitir respectto (e~I ansI tire dual basis

(writing for instancc .v = ).vM )).

Let F he S” T* .0 F where F is sonssefinnte dinsenssionalvector spaceamid

let ‘s he theF-valuedk-symbol

= ~5 + /ll T* -.0.’ F C SAT* .0 (~S’~’T~~J”):

tisen A’ is involutive isy Lenlnsa 4.3 and propositions 4.5. fire cornesponrdnmcg

equationsI ~.). (as above ins 4.11). reads

a . . . a (0 ~ ,fv I -~ ii, n~’ , Ix)) -~ 0.
i’m <‘s - n “i- ,n - r i ,r, i

2. Exterior diffUrcntial sr’unboi. Let mrs clemsote 6 acting to the right hr
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6’:S5T*®A5T*~n-SlT*®Amn-’lT*.LetAT1~1CT*®APT*denotethekernsel

of 6’: T* o APT* —s A~’n-I T*. A
T

1~1 is a APT*~va1ued1-symbol on T; its 2-th

proloisgationA~1~1~
5)is the kernel of 6’ :5’s + 1 T* 0 A~T* ‘~s~Q T* 0 j~P~ 1 T*,

Ons the other hand N
1~,’sn-~~ is, by the formal Poincarëlemma 4.3, the imageof

6’ : ~Q+

2T* 0 APT* ...~55+ 1 T* 0 AP+ 1 T*; thus we haveshort exactsequences

0~N~t)~S’s+2T* .0APT*~A~
11 ~0

by tensorisationon the left by the A’
7 T* and using the fact that 6 ° 6’ = 6’ o 6

we obtain theshort exactsequencesof 6-complexes

‘6 ‘6 ‘6

.1~ i. 1’
0~AqT*oN(Q+l)~AqT*o5Q+2T* ~

16 16 ,

16 16 16
The complex in tire middle has trivial cohomology (again by lemma 4.3) and

tlserefore we haveH’s”s 1,q(7~T) r~H’s’1’ 2,q+ 1(A’)

Thus H5 + t,q (Ni~i) H~” 1 + p.q + p (A’
01) V2, q, p ~ 0. On the other hand,

= { 0] C T* 0 JR = T*, (6’ : T* = T* 0JR ~+ T* is tile identity of T*). so
7\T(Q) ={0} ~ ~‘s’~’ 1 T* o JR = 5’5+ 1 T* and therefore

= U, Vr2” 1, Vs.p 2”0; in other words is

au insvolutive A~T*~vaIued1-symbol, for any p 2” 0.

The correspondinsg equation (étN1 ~ reads: dw(x) = 0 x ~ w(x) C APT* is a

p-form oni T andd is the exterior differential.

3. <<Killing symbol>~.Take F = T* and consider tine I-symbol N defined

by AT = A
2 T* C T* 0 T*,

Onse has N>1~= T* 0 A2T* fl S~T~0 T* ={0}, so one has N>’s~={0},V2 ~ 1. It

follows that one has 11” S(7\T) = 0, Vr ~ 2 but H” 2(N) is non-trivial (Ht 2(N) ~ 0):
thus this synnbol is not insvolutive. The equations (~~)reads: (x r—s (w~(x)) C T*)

+ OVM(x) = 0. :
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4. ..llu.vnr’ell (spinn 1) .cnuurboi. Let g he a nronr degenseratecisymnretric biiinne:nr

forum on 7’ with nnatrice(gI = I gI c, c II arid let ) gi’ ~) be tire imsscrsemsr:r triee.

Let 2’ he tire space7’~ausd ‘s he tire 2-synishoi

‘s = ~ CS
2T*.0 T~g5i’(’I ~.1i = 0.

Once checks that a basis (e) ins which, for inrstancce is diagonal, is quasi-

-regmnlar for .V. Thmrs -‘s is insvolutive. The correspousdingeqmnation(s~.I n’eads.

gSn 0
5(OA(x)— 0,,A~(.v))= 0.

5. LinearizedEimm.s’tein (spun2) snmhoi. 3, 5] g heiurg as above,let F he tire
spaceS

2T* ansdA-’ be tine 2-symbol

“s = ~ CS2T* ® 52 T* g5i’(in + im,~ — /m
5~1,~In ~ = o:.

Onse checks again that a basis (e) in which (g1~,) is diagoniah is quasi-regularfor

so A’ is involutive andthe equationi~ reads:

g”i’]O(O/n(x)+ ~

6. Dirac (spun1/2) symbol.g is as above andEg denotea spaceof (irreducti-

ble) representationof the Clifford algebraof g. i.e. a vector spacesucin that we

have a hnsearmappingy : T’-’sEnd (Fg) satisfyinig y(.v)-y(n’) + ‘yIn’ )ytv) = 2g(x. 1111

for any x, n’ C T, ‘y denotes-y(e). so havey(x) = ‘y~,x’~.Let £ =

17g and coussider

tue 1-symbolA’ defined by

N=](~)CT* Eg~g>””y’s~ip=0}.

One verifies again tirat ausy basis (e) in winds (g) is diagousalis quasi-regular

for ‘ so A’ is involutive and theequation(~~)reads:

g”i”y0~i() = 0.

7. Raruta-Scinwiunger (spin 3/2) svnmbol. [6) g, 2’g’ -y being as above. let L

be tine spaceT* 0 E,~,ansi A’ be the 1 -synsbol

.\‘=]I~p,)CT*®(T*®Fg)~e~m I3i”’~ ‘~

where � i’m i’~

1 is completely austisymnietric((ei’n i’/I) C A” 7’) with ~ t. 2,- “

Agains. this is ans insvolutive symbol becauseauiy basis inn winch (g~,,) us duagoural

is quasi-regularforA.The equations~ re.:ds:e~~ ‘~~r ~ ~
0~~,,I.s’) = 0.

or, by, introducing ~i Cv) = ~ (x)shei’ = d.c i’ andtime exteriordifferenstial d.

~A...A~Ad~(x)=0.

‘I - 3
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4.13. Remarks

I. The dimensional computationsin tise examples4.12-4, 5, 6, 7 to verify

the quasi-regularityof (e) when (g) is diagonalare straightforwardalthough

tiedous. They are simplified in suds basis (whereg~,is diagonal);this doesnot

meansthat other basis are not quasi-regular,(I simply verified that it wasO.K.

for such basis).

2. Let F’ and F” be two vector spacesand let N’, (resp.Ar”), be a F-valued,

(resp.E”-valued),k-symbol on T, then we have:

a) N’ eN” is a E’ 0 E”-valued k-symbol on T and

HTs(AT~neAT”) = HT’s(N~)0HTn(N’~);

b) A’ 0 F” is aF’ 0 E”-valued k-symbol ons Tand

HT’5(N’ OF”) =H~5(N’)oE”.

3. Notice the following:

a) The T*~valued2-synsboi N on T of example4.12-4 containsthe 2-symbol

S3T*, i.e. S3T* C NC S2T* 0 T~,

b) tlse S2T*~vaiued2-symbol N on T of example4.12- 5 containsthe imageof

S3T* o T* in S2T* 0 ~2 T* under .s : S3T* 0 T~-+ S2T* OS2T*

= p~Xp + w,,~, i.e. ~s(S3T* ® T*) CA’ C S2T* ®S2T*.

c) the T* ®Eg-valued 1-symbol N of example 4.12-7 contains the 1-symbol
52T* OEg C T* ® T* ®Eg~i.e. S2T* ®FgC NC T* T* OEg~

These properties are connectedwith gauge invariance [3] of correspondingequa-
tions and may be used to give another proof of the involutivity in thesecases.

4. By their very definition, (see in 4.11) equations of the form are
formally integrable equations.

5. Scalar symbols. Let AT C S~’T* be of codinnension 1, i.e. N = ker a for a
linear form aC S’ T on S~’T* with a ~ U. Then there is a w C T* such that
a(w”) � 0 so SkT* = AT 0 l~-w~and, if (e) is a basis of Tsatisfying (eu, w) = 0
for p = 1 n — I (=n. (en, o.) ‘� 0), (eM) is quasi-regular for N; this follows

from tine fact that the compositionSk+1T* ~ T* ®SkT* ld®o> ~ is surjec-

tive so dim (S.t’’1’ 1 T*) = dini (A’~’~)+ in. Furthermore,the sameargumentshows

that we have6(S” + I T*) + T* oN = T* 0 St’ T* and therefore H°’2(AT)= 0 so
H’~2(N)=0,Vr2” 0.
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5. INTEGRAB1LITY CRITERIA

Let F he a (sns’nootir)vector buusdie over 13. Tineni we hravc time following resuit.

5 .1. PROPOSITION. [9] Timer’s’ is a ummiquelinear nnappinng

D : F(J~~
1(E))~ r(T* ®J~(F))satisfn’ummg

a) D(f’ s) = slf e ~
1(s) +fD s, f~r ann fC C~(B) amid .c C

h) Doj~1=0.

Tue unsiqmnenessis clear since if D’ is ansotisermapping with tinese properties.

D — D’ is by a) C~(B)-linsear (i.e. it is a vector bundlehsonsomorplnisns)aund by

h) it vansishesous Ins
1k + I which spansi~.+ n~

2’~so D — D’ = 0. For theexistence,

we chsoose coordinates (see ins 2.7) and write D.s = d.ci’J) she) svntir

(D~s(x))~m ‘ ‘ ‘ ~,71 = 0~ u,,, (,v~ 5nnr ~ he I. Von ~ 4. n.e. P.s is tins’ puii

hack by s of thecanolsicalJ~(E)-vaiuedouseforni 0 on i~.,~
1(Fi. P.s =,s’ * 0.

By a). D is a I -thi orderdifferenstial operatorfrouis ~ + ~IL I inn j’u’ I ss’nthm

synrihol a1(D) = ide ~ : T* Cf5 + ~(LI T* C J5(EI. P.s = 0 ns equivaienst

to s = it’ + ~ for sonise local sectious of L’.

OneextensdsD to F(.-\ T* Ci (F)) by insrposing

Dw®s=dw®~~(s)+(—h)~wADs for WCFI.,\)T*I.

C F(J~1(E)).Vp.s2” 0 and D LIE) = 0. We theus have:

D F (A~T * ® + n (F)) C F) ,\f/ + n T * C i~,(£1) ansi P
2 = ()

So we hiave the complexes

1) f) 1)

0 F (E) . F )ir+ (F)) ‘ . . . 1’ (A’T~C J,(E)) -~ - . . (‘~~ ,,I

5 .2. LEMMA. Time abon’esequeuncesare e.vact.

Notice tisat ifs C F(St’+ 1T* CE) tlsensDs = bs C F)T* (~S’t T* CE) (‘omnsnder

the l’ollowing diagrarmn:
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0 0

o~r(Sr+~+IT*eF)~. . .~F(AsT*.0ST+1T*oE)_~..,

- D D D

-*..

tid ‘r+s~~’ D D ~ido~~1 D

.~ F(A’sT*O~(F))~

U 0 0

This diagram is commutativeand the columnsare exact so we havea short exact
sequenceof complexes

U “‘p ~r + s + i (0> “~‘~ ~‘r+ s+ 1 “~ ~ + s “~

By 4.3 we know that tue cohomologyof ~ i(0) vanisheswhich implies that

tise coisomology of ~ ~+ is the sanie as the one of ~ andtherefore,it is

tisesaisieas shecoisonsologvof (~‘Q)

Id =jO

U —+ F(F) —+ [‘(F) —+ 0 which obviouslyvanishes.

5.3.LEMMA, [14] Let R be a regular k-tin order linear partial differential equa-

tioun on E and suppose i/mat its 2-tb prolongation, R (5), is also regular. Then, a

section s of ~. + + ~ takesits valuesin R ~‘s+ ~, (i.e. s(b) C Ri’s + 0), if and only

ifwe have: ~ 1°s(b)CR~’s’~andDs(b) C 7~®R>~5),for any b CB.

Considerthe following diagram

~ F

£ ~ k+5~ )

~+~+~( ~ :
whereX =i

1(~~~i), (seeins 2.3- 1), andp = ~ :J1(J5~5~1(E))~~k+ ~ 1(E).

This diagramis commutativeansd~ 1 is therestriction of

7r~:i1(i5~5(E)) ~ 5(E) to ~ ~ 1(E) C J1(i5~5(E)). It follows that we have
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>5 p1 0 arid tlnen’efone that S p maps./1Ii~ .~>I1)rnnmo 1’ ‘: .I~, 1
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is tine C~(B)-moduleof its sectionssi.e. FH’~(A)= F(H”
5(A)). We also denote

by ~ n, or simply by cr whens rio confusionsarises, the homomorphismof

C:~(B)-modules of F(APT* ®Rt5~) in F(APT* eRt5~) induced by

~ :R(5i’t) _÷R(i>.

5 .6. PROPOSITION.Let R be a regular k-tin order linear partial differential equa-

tion on F, (k ~ 1). Assumethat R(P—i> arid N~5~are vector bundlesand tinat

ir~~j~ : R (0 -+ R~~n> is surjectivefor some 2 ~ U. ThenR(5) is a vector bundle

amnd there is a homomorphism of C~(B)-modules x~:F(R (0) “+ [‘H5’ 2(N) for

which wehave:s~l(F(R(Q~>))=ker(x
5).

Tine kennel of ‘,~.,“ : ~ —n’ R~
5”0 is ~ for any b C B, and therefore

R>~5’~is (by time assumption)isomorphicto N~5~C R~5”’~which is the fibre of a

vector buusdle; therefore dim R>~5)is independentof b CB which implies that

R ~> is a vectorbundle.We now proceedto tine constructionof

Let s be in F (R >~‘)); thens, from the surjectivity of ~ we have

Ds = cr~j~j~
1(u) wisereU C F(T* ®R~

5~)is uniqueup to elementofF(T* OAT(P));

Du CF(A2T* oRt5”~) is unique up to bF(T*OAT(Q”~))(=_DF(T* ®N~5~))
ausd is in fact ins F(A2T* ® A~5~0)since irDu = D2s = U. Furthermore

öDu = —D2u = U and tiserefore x
5(s)= Du + ÔF(T* oN~

0)is a well defined
elensent of FH”2(A’). Let f be an arbitrary function fCC~(B); then

D(f’s) =fDs + dfonn(s)=fir(u)+ 7T(dfos) = ir(fu + dfos)

and D(fu + df os)=fDu + dfoir(u)—dfoDs =fDu where Ds = ir(u) as

above . It follows that

x
5(fs)fDu + o[’(T* OA’

t0)=f(Du + M”(T* ®N~0))=’fx
5(s)

so x5 is a homomorphism of C~”(B)-modules.If we haves= ir(7~,[C F(R~
5~),

then we can take u = D7 above, which implies Du = 0 and therefore x
5(s) = U,

so we have ~.k± 5+ l([’(R(S+ 1))) C ker (xi). If x8(s)= 0 then we can chooseu

such that Du -= U above so u = Dv for sonse vC r(Jk+ ~ ~(F)) (by Lemma

5.2)and therefore Ds = ir(u) = Dir(v); so(agains by 5.2)we have ir(v) — s = j’ +

where s0CF(E). Define 7 C F(J5 + + ~ by 7 = — ,jk+ S +

1s
0 we have

Ds’= Dv = u C F(T* ne R~
5~)and ir(s) = 7r(v)~~j~~’1’~5o= SCF(R0) which, by

lensma5.3, implies 3’ C F(R(Q+ 1)) So we have ~k+ Q+ ‘(F(R (P+1))) D ker (x~)ansd
thereforetine equality~ + ‘(F(R (P+ II)) = ker (ce).

5.7. COROLLARY. [10, 11. 14] Let R be a regular k-tb order linear partial

differemntial equation on E. Assume that N and N~are vector bumndlesand that

H” 2(ATb) = U for aim’ r ~ 1 amid for alum’ b CB. Then R is formally integrable if

andon/i’ if wehave:~k + ‘(R (0) = R.
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Tire necessityof the condition follows Ironni tine defmncntmoni. B5 tine sansneargin—

nrenrt as ins time beginning of tire proof of ~ -f m (17>1>1 — 17 insplies that ID I)

ni a vector bsnnndle.Assumetinat ,\‘> ‘> are vector bundlesfor t inn annst comrsn~fer

for each h C B tire sequennce

0 -‘* \im + i> ~~1=r* is ‘s-Inn> ~_I+i~2T* ® .\On m ,~÷537* s~:

r’: ~ 7~*se.V~”l--2>/5(~27~* is ‘sOrn -n> I . ft

Tins sequensceis exactso we have

dnns ~ + m> + dinu (A3 ~ ® VIm 2)/5(52 ‘* C.Vm — m>
11 =

insdependenstof b so dim .“s‘>~“ + I> = (~tt iusdepenidentof b siunce both terms are

upper sensicoustinsuoussmnid therefore .‘s’~” + ~> is also a vector Isumidle. Tirus afl

5) arevector bundies.It follows that

FIT* C 50771>) [‘IA
2 T~33’s~(fl1 -nI) l’)A3 T* -C

are also exact for mm ~ 1 anid thus [‘JJ~ 2~’s’~= 0 for r o I . Assume mom thmat

R>s> are vector bundles for 0~2~mmmand tisal ~IR>S ~m>)R>s> l’>r

0 ~ 2 ~mnr — 1. Tiremi by 5.6, ~k±nn+i)F(R>??n +01 = FIR>”> I which implies

that ~k4’m + l(Rrl?n m n) = R>’~> anid tirat F rn + m> is a vector (sumidle sumsce ‘sm -4 0

is a vectorhunsdle. So 7r~+ i(R >1>) = R inspliesfornsai initegrabmlntv.

S.~ - COROLLARY. Let F be vector bnimndie equippedme/tin a s’onnnre.vionn V annn/

let o : T* e £ 1—’ he a m’ector bumndle Iromnomnorpimisnr soc/n that its ks’i’nnci .\

i.s a vector bn,mndlc’. Let R = ker[S~lo 7) C i
1 (F). F is a regular 1-tim order equa-

tiomr ic/tin A’ as symbolamid ~) FIR >1>)) = FIR) if amnd onin’ if V F(’s’) ann t2 1’> 151
al’s’ containedjim S Fl T~0,5’), (FZ is thecurvatureof 7).

We isave ir~(R) = F amid p1 (7~) ~ is ans isornorphisuns of vector tsundies of

(L’) on (T~0- F) 17 (see ins 2.6): under this isonrorphismrm F us mapped or:

.5’ F amid tine mapping x~of 5.6 (tIne coniditions of 5 (s are satisfied for 2 = 0.

S = I) correspomidsto nsappinngsx~: F(A’) ~ 2(5’) smut : FIL) l’Ji° 2I\)

which niust vamsish in inenever~( FIR n ~ = FIR I by 5.6. Now

1): F’)J1(E) F(T~0 17) correspondsto

I—Isi)’iV FIT*CFIiF(E)=F(T*CFI

unider tine isonsnorphism and so startnrrg wntis .s C 1 ‘Il/I correspomidnnrg to

C F(T* seJj’j FE) Ds = 7w”— °“m and we cam: elroose. (see ins tire
proof of 5.6). mi C [‘I 7’~5:17) 1’) T* :e T~eEl c- l’I T~:5 ID wrtln elm 1 — Dn
to he itself represenitedby 7w,~— so1 uusder this isonssorpinusnnr :mnd tirerefore
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Du = 7
2w

0—7w1= ~w0—Vw1 C F(A
2T* C E)(= F(Z°’2(N))). Thus we have

x8(wo) = cZw
0+ b F(T” CAT) and x~’(w1)= —Vw1 + m5F(T* ON) from which

5.8 follows.

5.9. Remarks

1. All the mappings involved above are local, so one may replace B in the
above statements by any open set Cc B and finally write the corresponding
results at the level of sheavestheory for germsof sections.

2. The H’>
2(Nb) are generally not easy to compute and it is hard to know

whether they vanish~it is why involutivity is important becauseit can be checked

more easily by applying lemma 4.8. There exist however 2-acyclic symbols

which are not invohutive [18].

5.10. Let R be a regular k-th order linear equation on E; R will be said to be

transitive whenever ir~
1 :R ~ Slc”l T* ®E is a surjection, (i.e.

~k1(R) = S”’~T* oF). For instance, regular l-th order transitive equations on

F are typically of the form R = ker p1 (a o V), as in 5.8, for some connexion

V on F and some a: T* ®E...m’F such that N= kera is a vector bundle and
the first obstruction to formal integrabihity is ~0(R)CH

0’2(IV); the corollary

5.8 just givesa convenient way of representing ,e
0(R)= 0.

In the following we shall be interested in transitive regular k-th order linear
equations with homogeneoussymbols so let R be such an equation. As pointed
out in 5.4, the H’>

7(Nb), (defined as in section 4), arethefibresofvectorbundles -

HT’7(N) and the FH’>~(N) are the C~(B)-modulesof sectionsof the H’>s(N);
it follows that under the conditions of proposition 5.6, x,~gives, (since it is
C~(B)-linear), a vector bundle homomorphism again denoted by

R~5~-+ H5’ 2(N), which must vanish in orderthat ir : R~5’4’1) ÷R~5~be surjec-
tive; then, R (5 + 0 is a vector bundle and we have x~+ 1 : R (5+ 1) ..~ HQ+ 1,

and so on... Since we know, by theorem 4.10, that Htm’ 2(N) = 0 for m ~ p

where p only depends on dim (B) and rank (E), the formal integrability condi-

tions of R read:

1
0(R)=x0(R) =0

11(R)=x1(RW)=0

(.9(R))

I5(R)=?~5(R~
5~)=U

I~
1(R)= ,~1(R~~’

1)= 0
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mm-’lricln is a finiite system of nion—hnurear tsartisnl differential equationslor tire ‘. coef-

fncieustss of R, (i.e. for nsap~ ik (E)/R). Thusthe linsearsystcnsiF is t’orncai-

ly mnstegrahleuff, c’/IR I is a satisfied anuh (Iris ussay heIis f’or stusir-’ing - 7(17 1 itself.

Wlrens .5’ is 2-acvclnc. (for Instance whensit is involutive). -D(R I reducestox1>(F I = 0.

5.11. Examples

Let b ‘-÷g(b C S
21~be a pseudo-metrmcoms B, a a vector I’ielcf X nm-hid:

generatesinsfinsitesin’mal isonietriesof (B, g) is called a A’iihmrg rector field,X is sr

Killing vector iff. L~g= 0, where L densotestine Lie derivative, Let w~he tire

1-forns associatedto X by g. i.e. w~ Y) = g(5. }‘I. ln a local chart (C

L~g= 0 readsV~X+ VX = 0. whereX\ are tine consponsenrtsof WA.. (~<cova-

rianst Consponientsnof X) annd V is tine Levi-Civita connections.By applying 5.8

ouie readily sees that if R icis the equations VA’ + VA’ = 0,’. ic,

R = kerp
1(oo7) C ~ (T*) witis o : T*® T* ~ T*, (liens ej(R>1>1 = F (in

fact H°’
2(A’) = 0) hut the symbol A-’ which is obviously Isoniogeneoushas fibers

“sh isonsorphic to the symbol describedins 4.1 2 - 3; so Ii”’ 2(~’s’)= 0 except for
r = 1 . Thus the integrahility conditiouss for R readx

1(R>i~) = 0 and onse verifies

tisat tisis is equivalenstto consstantsectionalcurvaturefor g. as well kusowus.

2. Sea/arequations.Let L : C~(B) —* C~(B)be a k-tls orderscalardifferential

operator witis symbol a~(L)C Sk T such that ak(L)b� 0 (C Sk Tb). Yb C B.

Then A-’ = ker ak(L) C Sk’ T* is a vector bundle witin Nb of codimension I ins

5k 7~,* for any b CB; by 4.13- 4 ~\T(l> is of codimeussion in us S>~’+ I 7* and

H”’ ~ = U, Yr ~ U, Yb CB. It follows (see in the proof of 5.7) that all the
are vector bundles (2 ~ 0). Let denote the bundle of k-jets of functions

on B; R = kerpk(L)c is a k-tb order partial differential equations with symbol
1\T and ir~1(R)= J~1so, (it is regular, Rb is of codinsensions 1 ins J,5,), sinsce

H
0’ 2(N), H” 2(N) H>” 2(N), . . . vanish, R is formally instegrable, (mnotice

that AT is not necessarilyhomogeneous).Of course, this result is somelnowtrivial

becauseone already knows it from classical analysis of ordiusary partial differen-

tial equations.

6. SOME APPLICATIONS TO CLASSICAL FIELD THEORY

6.1. Notations and conventions

Let E be a vector bundle over B equipped with a connection 7; if XC F(T)

is a vector field on B, V~: F(E) —* [‘(F) will denotethecompositions

V X®Id

F(E) —* F(T* OF) F(E).

If (C. x ~) denote a chart of B, V~denotes ~ : F(E~C’) ‘-÷ [‘(El’C), Tinere
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is a natural connectionon tine dual vector bundle E*, again denotedby 7, cha-

racterized by X (~*,~ = (Vxs*, s) + (~* Vxs) for any X C I”(T), S C [‘(F) and

s’~C F(E*), ((s*, 5) C C~(B)). If
17m is another vector bundle with a connection

again denotedby 7, there is a natural consnectionon E ®E’, (resp.F oF’), such

that
7A’ (s os) = ~ s)os + s oV~s’, (resp. ~ + s’) = V,~,s+ Vxs’), for

anyXC F(T), SCF(E) ands’ C [‘(17’).

lus tine following, B will be a (smoothconnectedpseudo-riemannianmanifold

with pseudo-metric gCF(52T*); g# : T~÷T*denote the bundle isomorphism

X n~÷g#X=g(X, ‘) and denote its inverse. All tensor bundles ~ of B will

be equipped with the Levi-Civita connection, V. If B has a spin structure with

spin bundle 5~,5/ is equipped with the canonical connection V associatedwith

the Levi-Civita connection, the <<Clifford product>> is denoted by

-y C F(T* o EusdSf),(y(X)
7(Y) + y(Y) ‘y(X) = 2g(X, Y)) and

T* ® 5/’-÷‘f is defined by y~(w® n~Li)= -y(g~(w))n,fifor w E F(T*) and
m,h’ EFCSf). y~is the symbol of the Dirac operator ~ ‘v~° V : F(,9”) -+ F(,9°).

In local coordinates,(x >D, we write g(X, Y) = g~X~Y
t, g(g~(cs),

g~(f3))= ~ -y(X) = -y,~X”,-y(g~(w))= y5w>, ~= i’>’V~, etc
Quite generally we shall always denote by V the connectionsinvolved, when

no confusion arises, and extend V to vector bundle valued forms asin 2.6. Notice
tinat there is then an ainibiguity between V : F(AP T* 0 E) -÷ F(AP +1 T’~0 E)

and the connection: F(APT* oE) -+ IT(T* CAPT* OF) corresponding to the

tensor product of A1’ T’~’equipped with the Levi-Civita connection with F, the
first is the composition of tine secondwith the exterior product (since the Levi-
-Civita connection is torsion free). We shall avoid this ambiguity by only using
tine symbolsV~,(or VA in local coordinates), in the secondcase.

Fiunahly there is a Hodge operation * : APT* -÷ A~~PT*associated with g
defined by

(*w) =v’~äet(g~)IE gPIU1gPP0PW

I... P

with csA * = ~A * cs = g(on, f3) vol C A” T*, V~,f3 E APT*. We extend * to
vector bundle-valued forms.

Ins the following we shall analyse some linear equations with homogeneous
symbols. The homogeuneity will always conne from tine fact that given b, b’ EB

there are linear niappings Tb -+ Tb., ~ —~ “fb’ which transport ~ oh g~,.and

~ b’

6.2. General Dirac equation

Let 5/, ‘y~.V on ~t be as above and E be a vector bundle with connection.
We lnave, as above, a usatural coisusectionc~ii.9” oE, agaiis demoted by 7; define

~7 ousS! oF by ~7=y~,®ldo7 :F(.’f®E)-+Fh’f®E). Let V:,’/®E—*S/®E
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he a vector bunsdle enclomorphisiii ansi conssiderthe I -tir order hinnear equations

is = kerp
1(~+ I’) on .~/oF. in local triviahisation .‘/ oF ~ (C = C ~ F( amid local

coordinates,R reads

(F),

The symbol A’ = ker (~‘~old) of R is honsogeuseousanid for b C B h is tire

iunvolutive synsbol describedins 4,1 2 - 6. By counstiusg(lie dinseussionisouse easily

sees tlnat H°’
2(A’,,)= 0, so since we have ir~(R)=1 ®F. )j~y’)2=g~’), R is

formally instegrable(x
5 = 0 V2 ~ 0).

6.3. Rarita-Schwingerequation [6] (Spin 3/2. zero nsass)

Let L : [‘(T* ® .9’) —~[‘(A” — m 17*0 .9”) he the I-tb order operatordefiuned by

L ~i = ‘y A~. . A A V n~,for ~‘ C F(T* 0.9’). and considertine I-tin orderlinear

77—3
equatiousR = kerp1(L) ous T* C ‘f. We have7r~(R)= T* is’! amid tire symbol

A’ of R is honsogenseousansd reduces for each b C B to the involutive synnbol

Ab isomorphic with tine symbol describedin 4.1 2 - 7. So17 is fornsally integrable

if aund only if ir~(RI0) = R or, whicln is tIne same here, if and oishy ifx0(R) = 0.

Applying V to L ~Li=0 we obtain ~yA.. ,A-yA~’2A ~ =0 ausd since V

factorizes throughjn o L, it follows that (R~’~)CR ~ ker (y A ,., A A ~2A ~);

ins fact tinere are no other independentequationsof orderlessthan one, as can he

shown by using coordinates,and tine vector bundle homomorphisni

y A. . . A y A ~ A ir~: R -+ A” T* o 5/is esseuntiahly ,~ (H°’2(~\~) A” T* ®,(/),

Thus R is formally integrable if and only if y A . . . A y A ~2= 0 (~‘2 heiung the

n—3
curvature of V acting nun [‘(.9”)) and this turns out to be equivalent to tine vainishi-

ing of tine Ricci tensor of (B, g) as one can see by using <cy-gymnastics. So the

formal integrability of R is equivalent to the Einstein equatiouss for empty space

R774,(g) = 0 [6],

6.4. Yang-Mills equations as integrabihity condition [3, 41

1. Secondorder form [3]. Let F be a vector bundle over B with a conniectiorn

V aind let L : [‘(T* oF) —~ [‘(A~~_’iT* OF) be the 2-th order differential operator

defined by

La=(7*(V~)—(—l)
77(*~)A~. OCF(T*®E).

where ~ is the curvatureof V. The 2-th order liniearpartial differenitial equatious

R = kerp
2(L) C J2(T* OF) reads in local coordinates ausd local triviahisations

gAi~(7(7~ — 7,cs~) — J”~,,c>’5) = 0,
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so the synsboh N of 17 is homogeneousand for b CB, Nb reduces,(apart from

a trivial tensorisations),to the involutive Maxwell symbol describedin 4.12 - 4.

Again, by 5.7, R is formally iuntegrableif and onnly if ir~(RW) = R; furthermore

we havehereir~(R)= J
1(T* 0 E) so is well defined(by 5.6) and formal inte-

grabihity of R is equivalent to = 0. Let us describethe vector bundle homo-

morphismx0 : R —i’H
0, 2(ii,T) Notice that

VL cs=~A *Vcs+(— i)”’’(V *~)Aa—(*~)A7cm=(— l)”’(V *~)Acm

and sinceV o L factorizes tinrough j~o

C ker (on i’-* (V *~‘~)A on) and therefore we have

CR fl ker(V *~‘~)A ir~); it can be checked that the last inclusion

is in fact aun equality, i.e. there are no other independent equation in

In fact, we have H°’2(Ar) E A” T* ®E, (via the *-operation), and

R -÷H°’2(~\r) is describedby (V * f2) A ir~:17 -+ A” T* CE. Thus, R is formal-
ly integrable if and only if the connection V satisfies the Yang-Mills equatioin

withnout sourceV *~ = 0.

2. First orderform [3, 4]. Let 17, V, ~2 be as above and let
~ C F(At1”2T* 0 End(E)) be a End (E)-valued (n — 2)-form (End (F) =E oE*).

Consider the first order differential operator L from (T* CE) C (A~’2T* CE)

in (A2T* CE) C (A~1”IT* CE) defined by

L(ono,13)= (Von—”~’~)o(V13—(—l)”~ Aon),

foronE [‘(T* C E),,6 C F(A~”2T* CE).

The symbolN of tine first order linear partial differential equationR = ker p
1 (L)

is clearly homogeneousand its fibre ~, b EB, reduces to the tensor product
of tine direct sum NUI mmsAT1 21 of exterior differential symbols described in

4.12-2 witln Eb; so N is involutive aund R is formally integrable if and only if
= ~ ~(~) = (17*017)0 (At~

2T*oE) ~ is well defined and )~is
formally integrable iff. = U. We have:

V(V~—(--h)”~Aon)= ~2A~—~AVa--(—l)”(VE)Aon

winich reduces oun ~ (by 7cr— ‘~‘~3= U) to (f~— ~ ) A~— (— I )“(V ~) A a;

since,by counstruction, this factorizestlnrough j~° L (on o j3), we have

~2(~1~)C ker(aC~~ ~)A~—(—l)”(V~)Aa)

aisd in fact the composition of

on’0j3 ~ with ir>’~ ~

is a vector buunclhe hounomorphisnn of ~kinto A” T* CE winich is essentially
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)~ jj02~~ Tlmns F ms fornially imrtegrahleif aurd onshs if~ --- (2 an:dV~ - (I

Inc. V ~- (2 = 01 wirnclr is tire first order foni: of Yanig-Mihls echuatiors:

* (V2I---~= 0 and V~ -- (I,

6.5. EinsteinEquationsas iuitegrabilitv condition [3. -4. 5. I

I. Secondorder to:’,:> [3. 5]. Let h e i’I.S~2T*’ I. tlren for I C ll~suffneren:(lv

smsiall. g + I Jr = is a omie—parannseterf’amiiil\ of pseudo—nsnc’trieon /7 mnitlr ,e --

the Rmecr temisor of g + rim. Rue(g + 1 />1 C [‘132 17*’). is well clefimrecf amrd cliffcrem:-

tiahie ins Inns a uneiglnhosrrinooctof I = 0. (‘onssicfer Jr L I: = Ric I g + I Jr I

L us a secomsctorderctrf’feremstial operatorfiomsi .S’2 T*’ ins .S’~]~.

IL C i/
21S T*, S

2 i,~ )I. which readsins focal coorcfinates:

IL/rI
5 =g”IV\V5i1. + V~V,1>77 —V, V/i5 —V~V,/r,~I.

It follows that tine secondorderhmsearparti;rf difl’erenstial edluatioms

17 = kerp~(L I ous ~ 2 ~ has a hounnogenieoussymbol .\ with typical fibre isommron’-
pine wntlr the nnvolutive symbol of exaunitsle 4.1 2 — 5. Furtlrernniore. mn-c’ have

.7- ‘7 * - . “ -

srj(R I = i1 (S— T ). so : R —~H‘ -(.5 ~Iis well define amid vanmsirwlreusever
>~>I = R me. whenseverR is fornsahiyintegrable,By usinig tIre idenitit~

V, R “ - = V 17 - — V R , onne obtains1-.~ 1--’ ~ ‘ 1-0’

gTc(V(Lh—~— V.L in>) =

gT
5g P~RV~(2 Jr

5 — g g”1-
1/r) + (V, ~, — 7, R

5) (h — g g ‘‘-‘

Sinsce the first side factorizes through: j~ L (ir). it is mreccssar~that F = (I

ins order tinat 7r~(R~>I = R, it cans he showms that this is also sufficient. I tinis

follows for instanscefrom instegrahilityof Ric (g I = 0 sinscethenR is thehincarisa-

tions of Ric (g I = 01. Tinus tIne limiear equationsR is formally instegrahheif and

onshy if Ric (gI = 0. i.e. if g satisfies the free Einsteins equationss.Notice tinat

I = 17 iff. nme have ~j
5>1> I = .‘n~~2~“*“ auid. in fact. x

0 :11 _jJ0.2)\ I

factorize tinrough irj~:17 -~ .Jr(S2T*’).

2. First order Ionii . In tins paragra~slr.nm-c let g he. ins above,a pseuclonsietrie

on B but V denotesnsomm’ wr arbitrar> torsions-freehinnear connsectioni oms 17 mm Inch:

is nsot niecessarily ilse Levi—Civita consusections.(i.e. me do ;rol a,s,s’minmc’ tirat wc’

Inave Vg = 0). (Conisider the l’irst order linsear hsartial cliffcrem’ntiai equation. F.

~ 5~~ 1 IT ~52 7*) which reacfsins local coordinatesfor

In + ~ CS
2 T* ‘I-(To’ S2 7*1:



TI-il. iHI-.Ol(Y or- OVI-;Rman:Tn:IcMnNEDLiNr-:AR SYSTF:MS 167

V5/m5,,— g51,A°~~— g,,1,A
5

55= 0 (R1)

0

Notice first that we inave: 7r~(R~= S
2T~ (To S2 T*’). By (R

2) we have

VA
5

55 — V5 A
5,

5 = 0, so that, by takiuig covaria~stderivativesof ~ we obtaini

V5~
5°V,/m

55)= V(g
5°V Ir~,)whsichimplies

(7 g~ ö” — 7gSP ö°)(g~A~
577+ ~p~A~) + g

5°(R °~ ~ + R ~
5,,~)in771 = 0,

winere we used (R1) and R
77~~

5denotedsthe curvaturetensorof V. It follows

that = s
2 7’* 0 (TO S2T*) insphies Vg = 0, i.e. implies that V is the

Levi-Civita cousnsections.Assumeusow that V is the Levi-Civita conusection, then

the system I~is just tine first order forns of the systemR of the last paragraph

6.5 - 1, amid we saw there tinat rT~(R(0) = J
1(S

2 T *) is equivalenstto Ric (g) = 0

and tinat this is equivaleunt to formal integrability R: it follows that here,

ir
1~(R(2)) = ~2 T* C (To ~2 T*) innphies Ric (g) = U and, finally, formal integra-

bility.

Summariziing,we saw tlsat for ~, ir~(,,~

2~)= S2T* C (To S2 T*) implies the

first order forms foriss of Einstein equationsVg = U, R ~ ,,(V) = U for (g, 7)

whichn in turn implies fornsal integrability of ~, aund thus, tinese 3 statements

for ~ areequivalent.

Notice tlnat, if (g, 7) satisfiestine first order form of Einsteinequations,tinen

R is tine liisearizationn of tisese Einsteiui equationsaround(g, 7), i.e. the first

orderinn c-expansionof theseequatioinsfor (g + eli, V + eA).

3. Remark

Notice that, in view of 6.3, the Eiunsteinequationnsare also the formal iuntegra-

bility cousditionsof tine first ordersystenssdescribedthere [6]. However, in 6.5 - 2,

the synsbol of ~ ins a scoisstauntsymbols (it is iunvariaunt by diffeomorphisms)

ausd tine <<coefficieints>>of ~ do only depend.in ansaffine way, on (V,g) which

are the variables of tine first order Eiisstein equationsVg = 0, R >‘~, ~~(V) = U

i.e. tine formal iustegrability of ~ inspliesboth Ric (g) = 0 and tine correct <<coin-

tact cousditionso Vg = 0. Let us now conic back to tine structuresdescribedin

6.4 - 2 and6.5 - 2.

6.6. PROPOSITiON. Let E be a m’ector bundle on B with a connection 7 and let

o : [‘(T* 0 E) [‘(F’) be a bundle homnonnorpinisni with kernel N. Suppose

I/nat tine first order equation 17 = ker~ (u V) is formal/v integrables whenever

~C’d 1(R~<~>= F, for some ~ I.

a) Supposethat each b C B has a mneigirbourirood (0C B sue/n that E C~admits

a flat connection of tine brim V + w mr’itin w C I~~(,\’0 E*): thnemn ~ is formmnahir
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iii tc’gi’a 55 -.

hI S’mippo.sc’ I/nat 17 Li audi> i/c’, F in in> wra/I’Tic and thai A’ i.c a lor,mna//> /1:1cC/a-

/1/c’ a,raIr’nc ed/oat/n/ri thrc’ii each> S C b’ /ra,s a ireighbourirooc/ ( c 17 ,mrirJi that

F C ac/omits a flat coir/lectioii of I/ic’ foi’umr V + w witir ~ C l~I\ ‘~: 5*’ I.

Ins otiner words if /1 isas above aiscl is analytic. tircmn, l’orliial integrahilit\ of

/1 is locally equivalentto tine existenceof flat eoninnectionsins the af’fimse subbumsclle

V + .5’ 0- 17 * of tire affinne bundle V + T~0 17 -0 [* of all connectionnsoin

aI is straighntformmard. if C C F, anY Inorizonstal sections .s for V + w passing

tirroughn ~ is such: tlnat f~’~~(5) C since 017 4- w Is =- a ‘- Vs = 0. so
+ I I dl) = 17 amid F is fornially instegrable.

Let us prove hI. if ~ ms formally instegrableamid ansalytic, it follows f’rons: tIne

thneoreni 3.4 tisat. for amy b C B amid C CE> there is a local solution s.of F smith

.sih I = C. So let c’ r he a basis of L’, ansd let .s s~be local solutionss

of 17 witls s~(bI= >i’’’’’ = c tinenr .snIh’)....s, 151 arc’ basis li>, mr a

neighnbomurisoodof h auid there is a unique connniectiousins this nseighihourh:ood

for sm-inch they arc horizontal: this coninectiomi is of tine foruss V + w smith:

w (b’) C.\’ 0 F * sinsce by assumsiption oV 5k = ~ V + w is fl:rt h~consstrLretion

6.7. Remark

Tine above proof of is I shioms’s tinat. wlsemr F is a fornssalfy instegraisleaniahstie
equatIonsas above. them there are ins genseral several flat local connectionsas

above and the tiseorenii 3.4 shomvs that nm-c msiay choosetineseconsnectionsto be

ansalytic.

6.8. Yang-Mills andEinsteinEquations as zero curvature conditioiss

We usow show that tine systenisR of h.4 - 2 amnd 6.5 - 2 satisfs-’ tIne assunrptiom:

of 6.6.

Yang-Mills. Let us usetine notatiousof 6,4 - 2. Set
L = (T* oF) 0 (,.\“ 2T*o F) ansci let

o:T*0E=(T*.0T*CL’)~(T*C.2Ahi 2T*’oL)~(A27’*’0EI I\1-1- l7*:.~/I

correspondto tire exteriorproduct(T* ~ ~‘* .52 ‘17* amid T*’® ~‘I 2 j’* 577- I j’* I

Defimse theconnectionsV on E by:

Cl = (v~— iIX) np). 1V~p—
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mvinere XC [‘(T) amid i(X) is definsedomi F(A’T*) to be the uuniqueC~(B)-hinear

antiderivationssuch tinat i(X) C~(B) I = 0 amid

i(X)w=(X,w)CC~(B)=[’(AOT*)forany i-form wCF~*):i(X)isextend~

ed to F(AT* 0 E) by i(X)(w Os) = (i(X)w)o s, w C [‘(A’ T*)s C F(E). With

tinese miotatiounswe inave L = 0 so tine equationR of 6.4 - 2 is of the forns

R = kerp1(uoV) amnd we knsow fron’n tine discussionof 6.4 - 2 that .~ is formally

integrabiewhenever7r~(RIi)) = F. Sincewe know that this formal integrabihity

is equivalent to the first order forni of Yang-Mills equations.we conclude,by
6.6, that if F is an ansalyticvector bumndle andif V. ~ are analytic, then, 7, ~

satisfy tine first order Yang-Mills equatiomns~V2 = ~ andV~ = U if and only if

there are local sectionsw of N 0~ suds tinat (V + w)
2 = 0, (i.e. V + w is flat).

Notice that tine mapping (V. ~) i-÷V defined above is an injective homomor-

phism of affine buuidles A (E) T* C E 0E* —~A (F), where A (E) is the

affine bundlethe sectioussof which aretine conunectionson E.

2. Einstein. Let us use tine notatioussof 6.5 - 2. Set E = S2T~o(To S2T*),

7x~”CA) = — k(X) A) 0 where

XC F(T), (k(X)A)
5 = g55 A~,5X

5+ g~,pA~
5X~

V is a connection on E. Let o be the symbol of the right hand side of (R),

u: T*o~S
2T*C(T0S2T*)~~#(T*0S2T*)0s2T*. Then (R) reads

a V (in C A) = 0 so we haveR = kerpm(a ° V) and we know from tine discussion

in 6.5 - 2 (mat R is fornsaily instegrablewineusever7r~R12~)= F amid that this is

equivalemntfor (g, 7) to tine first order fornn of Einsteims equations7g = U and

R ~ ~,(V) = U. Thus, agaiui by 6.6. if B. g amid V are amnalytic, the (g, V) satisfy

tine first orderformsnof Eimsstein equatioussiff. there arelocal sectionsw of N C E *

suchtinat V + w is flat ((V + w)2 = U).

Let A
0(T) be tine affimne subbumsdle of A (17) tine sectionsof which are tine

torsion-free (i.e. symssmnsetric)comsmsectiomsansd S
2~T* be tine coneof elemenstsof

~2 T* whnicin are nous-degemseratedof sigusaturee. Theun(7, g) i—~V is the restric-

tious to A
0(T) C T* of ans injective affine homomorphismfrom A0(T) o S

2T*

ins A (E),

7. CONCLUSION AND OUTLOOKS

We haveshsowus that tine Yamsg-Miils and tine Eimssteimsequationsare theintegra-

hihity comsditioussof himsear systemsamid that. eveus more, that cams be read as zero

curvaturesfor connectioussof sousetypesoms appropriatevector buundles.This is

to he comparedwitin what inappens[2] for tine so-calledoconspleteiyintegrable>>
systenssof partial differenstialequatioussins dimnneussiomi2. lus dimensions 2, inowever,
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tIne jsnre Yamng—Mnlls auncl Ennsstennsequatroussare esscmrti:nils trivial lroimn the local

tormnt of vremn . In: clmm:meissmon ir greater thramm 2. orne loses tire relation: betsveemr
zero-curvatureamid eomsservedquanitity I because.tlneni. sme ham-c’ ir 1S~ I lIr -

There is nem’ertlnelessa sm’ay to procltrce. mm: prrmscnple. imntnmnite sets of eonnsersed

quanstitiesmm’inmehn eonrsesl’ronir tire fohlosvmung property of tIme linear svsteminstlr :11

mm e crsecl. Whnemn tine limsear svstennn is iuitegrable. i.e. mmhren Yanig—Mills or Fimnsteim:

eqcnationnsare satisf’uech. oune cams conistruct mvithm two solntionrs . ~, of time linear’

systeunn.a closed(mr — I )-l’ormsn W(~r. ~2 I. (n.e. by ~ a counservechcurremstJ5I~r.~ I I.

sm-lnicim is bihinsearamnci local ins g
1~~2’ amsdsuch that its restrictiomnto a local (‘auchms

surfacedoes onilv depemsdons amid ~2 thnrougbnthneir local (‘auciny cfata onn tine

surface: SO by fixnnng setsof mndepenident(‘acnchry data for tire linear system omse

obtains a ( mnf’inite I set of comiserveci qUauntitjes that onnl~depenncfons tine coehli—

dents of tine linear equations.i.e. omn Yang-Mills or Einsteinn fields. (‘ounsiderimng

Yanng-Milhs or Einssteumsequationsas dynnannnicalsystennsone nray try to connipute

tire Ponssomnbracketat thesecomiservedquantitiesansd to exhmibnt tine correspornchnrre

Lie algebra.Practically.lnomm-eser.thnis is very difficcmlt becauseall thesesystemr:sare

systems smith comnstrainsts, so onie miirnst use tine whnole runachinnery to deal smith:

suchn systemshotin at tire level of tine hinnearsystemsamid at tine level of tIme I mnams-

-hinsear) Yaung—Mihis or Eunstein systennss. Work iii this direction is curremntls im:

progress.

Tlnere ms ausotheraspectof tine insterpretationnof Yang-Mills andEinssteinsechua-

tuomns inn tensns of imstegrability connditions. mm’inichn was poimntcd out its a previous

work [3] and was thnenn used to generahiseto the coupledYaung-Mihlschargedfield

equatiomssamid to tine coupledgravitatiomn-nnnatterfield equationnstime abovediscus-

sious: it us tine iunterplay betweenstheseinstegrabihity problemsamid tine imnvariamsce

by <<imifrnsmte groups>- (or pseudogroups).unansnelygaugeinsvariamnceamid invariamnce

by diffeounnorpinisnnn.For instansce.tine free Einsteini equations.Ric I g) = 0. aretire

Euler-Lagramngeequationscorrespondnnngto tine funnctiounahg S = jg
5’ F

5, (gI vol.

tlmis funnctionah is imsvariamnt by chiff’eomnnorplnisunn wlnicln leads to tine icfemntit~,

V>gss(R — i g5,,g~’Ji~,)= 0 via tine secondNoetiner thneoren:s [19]. Takimmg tIne

deris-ative of this idenntity writtemr l’or g —f I hi at I = 0. one obtammss amr idlemstit\

comsnnectingfirst derivativesof L (i.e. j~-~F I \m-iths tire Ricer tensor [3.5 I anmd it ms

this very idenstit~smlnichn imsiphies thrat 7r~(F inn I = F is eciuivalemnt to Ric I.e I 4).

svIrere F = kerp2(L I. R 11 = kerp3(] I -~ ~ Sinnnilar conisiclcrationss apply to

Einssteins—nnatterfield equationswhnichn ahsn conine from actionnsimsvariamnt b~dm1’-

feoninorpinismiss.For Yanrg—Miils equationssamid coupled Yamsg—Mills—clnarcmcchheld

equatmouss.tine role of dmffeonnsorphusmsnsms played by tine gaugetramsslormnnatmorrs.

Notice thrat gauge tramnsl’orninationnsare chif’f’eounnorphnisurrs of special kmn:d of lIne

appropriateprimscipal bundle and it is kmsosm-ms tbnat. tinere. tire Ya:sg-Mills currd’rst
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nnay be interpretedasa part of Ricci temssor[20, 211.
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