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of overdetermined linear systems
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Abstract. We review some aspects of the theory of overdetermined linear systems of
partial differential equations and use it to interpret some non-linear equations of
classical field theory as integrability conditions of linear one. In particular, it is
shown that the Einstein and the Yang-Mills equations are equivalent to the existen-
ce of flat connectionsin affine subspaces of connectionson some vector bundles, i.e.
they may be written as zero-curvature conditions.

1. INTRODUCTION

The interpretation of some non-linear field theoretic models [1, 2] in dimen-
sion 2 as integrability conditions of linear systems and, more precisely, as zero
curvature conditions for family of connections has been very useful for the
analysis of these models. On the other hand some more realistic models such
as those described by Yang-Mills or Einstein equations do present themselves
as the vanishing of certain covariant part of curvatures, it is therefore natural
to try to interpret these models also as integrability conditions for some linear
systems and one may even wonder whether they can be represented in some
sense as zero curvature conditions. We shall here report on some recent work
on this subject {3, 4, 5, 6]. There is another even more natural reason for physi-
cists to study integrability conditions; namely it is well known that there are

(*) Laboratoires associés au C.N.R.S.
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troubles with some linear classical ficld cquations in external ficlds {71 These
troubles are connected with the noun-integrability of these equations for gene-
ric external fields: there are however some configurations of these external
fields for which the systems are integrable. It is therefore useful to have an
algebraic way to produce the obstructions to integrability of systems of partial
differential equations. This i1s one of the goal of the formal (or analytic) theory
of overdetermined systems of partial differential equations [8] developed by
D.C. Spencer [9]. D.G. Quillen {10], H. Goldschmidt [11.12]. B. Malgrange
[13,14] and some other ones. In view of the applications we have in mind we
shall only describe here some aspects of that theory for linear systems. the theory
for non-linear systems [12] is basically similar but with some technical complica-
tions.

They key notion is the notion of formal integrability. This is a very natural
notion: one tries to solve a system of partial differential cquations at order ¥
at some point (i.e. in the sense of Taylor expansion at order ¢ at that point)
and. roughly speaking. one says that such system is formally integrable whenever
there are no obstructions to continue the expansion from order € to order ¥ 4 1.
for any ¢ and any point. If the system is a good scalar equation or more generally
if one can solve the local Cauchy problem for it. then evervthing is O.K. and onc
does not learn so much with such expansions. In some sense however the converse
also works at the level of analytic equations and solutions: i.¢. roughly speaking.
if the system is formally integrable the local Cauchy problem. for non characte-
ristic data, 1s soluble (at the analytic level) [15].

The obstructions to formal integrability of a system essentially take their
values in some space of cohomology constructed with the symbol of the sys-
tem.

The appropriate language to deal with Taylor expansion in a compact coordi-
nate-free way is the language of jets [16]. it is why we start with a section (sec-
tion 2) dealing with differential operators and jet bundies. In section 3, we define
linear equations and their prolongations in terms of jet bundles and start to
discuss the notion of formal integrability. In section 4 we describe the relevant
cohomology of symbol in terms of finite dimensional vector spaces. some exam-
ples of useful svmbols are described there. Section 5 gives the relevant integrability
criteria and description of the obstructions to integrability. Some applications to
classical field theory connected with the motivations given at the beginning of
this introduction are described in section 6; it is shown. in particular, that Yang-
-Mills and Einstein equations may be written as zero curvature conditions (at
the analytic level).

When there are indices: we use the Einstein convention of summing repeated

up-down indices.
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2. DIFFERENTIAL OPERATORS AND JET BUNDLES

2.1. DEFINITIONS. Let E be a smooth vector bundle over B: the space I'(E) of
all smooth sections of £ is naturally a module over the algebra C™ (B) of all
smooth functions on B. Let F be another smooth vector bundle over B and let
us denote by QO(E, F) the space of all homomorphisms of C* (B)-modules from
I'(E) in I'(B). It is well known that for any L € .@O(E, Fy there is a unique vector
bundle homomorphism pO(L) . E - F for which we have Ls = pO(L) os, for any
s @I(£), and that, L 1> p (L) allows to identify @O(E, F) with the space of all
vector bundle homomorphisms of £ in /. Let £ (E, F) be the space of all map-
pings of I'(E) in I'(F") which are linear for the underlying vector space structures
{multiplication by constant functions on B); one may identify @O(E, F) in
HAE.F)by

YNEF)={LELE F)|Lef—foL=0 Y eC"(B)

where f€ C™ (B) isidentified with the element of & ((E. E) (resp. 2 (F. F)).
si=>f s, sel{(E). (resp. s €T(F)). One defines inductively, for any integer
k= 1. the spaces Z,(E. F) by

G(EF)={Le LE,F)|Lof—foLEZ, (E F).

The elements of _@k(E, F) are called k-th order differential operators from E
in F

If Le @k(E, F) and L'e.@&(F,G) then one verifies that the composition
L'oL=LL is in ka(E, G). One also verifies, by induction on k, that if
L€ P F) and if s € I'(E) vanishes on some open set ¢ CB then
Ls € T(F) also vanishes on (¢ ; thus the germ of Ls at b € B does only depend
on the germ of s at » € B.

Let s and s’ be in I'(E) and b € B: we say that s and s’ agree to order k at b
if their components in some local trivialisation have the same derivatives of
order < k& with respect to some coordinates system at ». This is an equivalence
relation which does not depend on the local trivialisation and on the coordinates:
the quotient bek(E) is the set of k-jets of sections of E at b and we denote by
j;" - T(E) »Jh.k(E) the canonical projection. DLEJB Jb'k(E) = Jk(E) is a vector bundle
over B in a natural manner and j¥: T(E) > L (E)) is a k-th order differential
operator; jk S @k(E. Jk(E)). Jk(E) is the bundle of k-jets of sections of E.The pair
(jk,Jk(E)) is characterized (up to an isomorphism of the appropriate category)

be the following property.

2.2. PROPOSITION. (Universal property of (jk,Jk)). For any L€ @k(E, F),
there is a unique vector bundle homomorphism from J, (E) in F,
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P &Y I such that e Tave. |, VS it

Phios. just as. for vector spaces, the canonical bilincar map of Eyoxlooom
Ly £, allows to replace bilinear maps {rom £y x Ly £ by hncar maps trong
/:'] 1-5 [;‘2 in £. the puir (5, ,/k(l;‘,)) allows, for vector bundies. to replace A-th order
differential operators from £ in /7 by vector bundles homomorphisms trom St
in /7. This proposition is of course an casy consequence of the delinitions: Jet us

give some examples of applications.

2.3. Examples

V. Functoriality of Ji. Let o be a vector bundle homomorphism of £ /-
i, ae E/O(E‘F); then A eais in .Efk(];'. ) and /)k(jk o). which will be
denoted by Ji () is a vector bundle homomorphism of S (E) m J (7). One veritics
that. ¥ 8 is a vector bundle homomorphism of £ in G, we lmw:(lktp’ o) (/A(p‘r
o (o).

2. The (un()mca/ projections 7r SAE) = JAE) (K = 4.
k= jle v AL JAED) IS also in J’k(b.‘/k(l;‘)). (since f_/k(L’. YD 2
tor A = €.
Then, pk(j‘ ) which will be denoted by 7r . 1s nothing but the canonical projec-
tion of .lk(E) on J{£L) obtained by «Ior&celtmg the derivatives of order stricthy

greater than £».

. Prolongarions. Let L be in _/k(t [y, Then jY= L is in U MELL U
it is called the il prolongation of L. p, | \(/ o L) is a vector bundle homo-
morphism of J, | (E) in J(F) which we denote by pr'™ (p (L)) and call the
C-th prolongation of pk(L,). pr'Ye¢) is clearly defined for any vector hundle
homomorphism of J (£} in F. (take L = ¢ < 7%). Notice that. for & = 0. prita)
= J (o) corresponds to the first example.

e JE) UGN I we take L= 5 (8 = ()
n the previous example, we obtain an injective vector bundle homomorphism
P \(‘j‘* 01"‘) of '/A L JE) In .I\‘(./k(l;')) which allows to make the identification

4. The canonical inclusions J,

J o B TIAJEDY) and Tinally to consider these bundles as subvector bundles
A+ o\

of J; PNy = / S R o Withe these ddentifications. we fiave i

(./])/‘ (S (/ )_ J A /k(l;")) nJ, 1(‘//\ ‘ 1(/;” Jor anv Kk 20 and Yz oas 1t

I casily seen h_\ taking local coordinates, (commutativity of partial derivatives)

2 4. PROPOSITION. Lz SET% denote the k-th svmmietric power of the cotangent
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bundle T* of B. Then S¥T*® E s canonically a sub-vector bundle of J(E)
which is the kernel of the canonical projection 71,{,"_1 SSAE) - I [(E)
In other words we have an exact sequence

k

0-SkT* e E—— J(E) - =

> J,(E)=0.

Indeed it is well known that derivative of order k at a point b € B is a well defined
tensorial object whenever the derivatives of order lower than &k vanish at b:
€Wdfy V.V df,©9) (0) = S, — [ (= £(B))5), Yfy, ... f,€CT(B),
Vs eT(E). In the following we shall make the identification SXT* @ E C Jk(E).

2.5. DEFINITION. Let L & Qk('E. F) be a k-th order differential operator, Then
the restriction to SKT*® E of pi{L) is a vector bundle homomorphism o,(L)
of SKT*®E in F which is called the symbol (or principal symbol) of L. For
the €-th prolongation. it is easy to show that ok”(jQ o L) takes its values in
SYT* e F(C J(F)) and that the corresponding homomorphism pr(Q)(ok(L)).
(which we aslo denote by a{9(L)). of S** *T* @ E in S*T* ® F does only depend
on the homomorphism ok(L) of S*T* @ E in F: pr(Q)(ok(L)) is the composition
of the canonical inclusion S¥* 7% @ E g S4T*® SKT* @ E with
lde%,, ® 0, (L) :S'T* @ (SKT* @ E)»S'T* & F.

pr®(o (L)) is called the 8-th prolongation of (L) and pr®(y) is defined for
any vector bundle homomorphism of S¥T* ® E in F.

let L € @k(E, F) be a k-th order differential operator; then the kernel
ker pk(L) = pk(L)’ 1(0) - Jk(E) is not automatically a sub-bundle of Jk(E) because
the dimension of ker pk(L) N Jb‘k(E) may jump at some points b € B (although
it is upper-semi-continuous). L will be said to be regular whenever ker p, (L)
is a sub-bundle of Jk(E), i.e. whenever b — dim (ker p, (L) ﬂJb! k(E)) is constant,
(we always assume that B is connected); L will be said to be completely regular
whenever its prolongations j* o L are regular for any £ > 0.

In the following, we shall only consider regular operators; this forbids, for
instance, an operator like x* ay + V(x) which is not regular in any neighbourhood
of the origin x = 0 of R".

2.6. Example

Let us recall that a connection on the vector bundle E over B is a linear map-
ping, V :T'(E)~»T(T* @ E), satisfyingV(f-s)=df ®s + f- Vs, forany f€C~(B)
and s € I'(E). 1t follows that s = [V, fls = df®s is a C™ (B)-module homomor-
phism and that therefore, V is a 1-th order differential operator from Ein T* ® £
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Ve r*aly The corresponding  vector  bundle  homomorphism
[>](V) SSU(EY = T* el is such that its restriction r}l(\/) to I'* el CUL G,
the symbol of V), is the identity mapping of 7@ on itsell (und this properiy
of the symbol characterizes the connections). Another way to say the sume
thing consists in saving that pl(V) is a splitting of the exact sequence

0= T*2 [ — JUE) L E—— 0 thus pVira n(il Sy Ty

is an isomorphism and the canonical inclusion 7% ® £ C J (L) corresponds to
T*@E—»(T*oFE)y1{0) C(T*eE)+ E. Vis regular but generally not comple-
tely regular. One extends V to ['(A'T*@F), i.c. to L-valued differential forms
onB. (A T*=IR«T*s  dA"T*)  byVwas=dw s +(— 1w AVstor
any p-form w € (AP T*) and s € I'(£): thus

V TAPT* 9 E) > (AP 1T* o F).

We have V2f s=V(dfes+fVs)=—dfAVs +df A Vs + Vs =fV7s. w0
V2. T(E)—>T(A2T*® E) is of order zero and thus of the form s — Vs = §2s.
where € is a 2-form with values in the bundle End (£) = £ ®£* of endomor-
phisms of £. We have on '(A'T*&F) V23 =QAY. for YET(A T*# L)
(with obvious notations).

QET(AXT* ¢ End (E)) is called the curvature of the connection ¥. Notice
that V2 T(F)—=T(A*T* @E) factorizes through the 2-th order partial difte-
rential operator jloV (I'(E) — F(J](T* ® /7)), (l.e. the 1-th prolongation ol
V). and a vector bundle homomorphism of J/(7* ®£) in AYT# ®F . in spite
of the fact that V2 turns out to be itself a vector bundle homomorphism, (pro-
duct by §2: of course one has EZJO(E, A2T* L) C .(/'2(1:’. AITH* k),

2.7. Coordinates

Let ¢ C B be diffeomorphic to IR” and let & —(x’. . x") = (") be a
corresponding coordinates system on (. Then the restriction M of £ 1o
("is a trivialisable vector bundle, ic. it is isomorphic to £ x ("= [ x R
where bU is u finite dimensional vector space with dim (/) = rank (£). Thus
clements ¢ of £} are represented. in such trivialisation. by pairs (. xy
£y x R" and the bundle projection corresponds to (Y. ) = () Correspon-

moE A
dingly. J(EyM O is isomorphic to] -+ ST(RM* o | x IR and the associa-
k I " ) U

ted  coordinates  dre (y & Yoo . v o 1.w. N where
. ) Moy oo Mo Ml oo Mg - Mg

the o < F . are completely  symmetric in Ijlc mdices g, uoottor
THy My v} - < 1 m

O<m < k) I x* = g represents a local section s of 272 ¢ then the coordi-

=0 ... 0 Wiy U=l

Mo Hi Mo \r’( )

where 0 = 2/0¢* ure the partial derivatives. The projection 77(‘ LY

nates of /%5 at b = (v¥)" are given by V|



THE THEORY OF OVERDETERMINED LINEAR SYSTEMS, ETC. 145

(¢ < k) corresponds (on () to the canonical projections

L, u
Wk b e e 0, xB) m (Ye

Qs-'-ywax“)
4

-

of
("Ea]; S"™(R")*® Ej) x R" onto (m§:: S™(R"* ®E) x R".

If F is another vector bundle over B with trivialisation over (7, Ff (Y] :Fox
x O~FyxR", and if L € Z(E,F) is a partial differential operator, then L

; ¢ MK by, HyHm
is represented over (0 by L = 20 o (x) 6“ c. a“ , where the o (x)
m = 1 m
are linear mappings of E0 in F0 (i.e. elements of F(J ®E6“); pk(L) :Jk(E)—>F
=k
corresponds to the mapping (¢ , ,,..., ¥, x*) H(m T oM “’"(x)\b ,xH),
HY-ME m=0 MMy

and the symbol ok(L) is represented by the map
(d/pl.,.yk’ xu) > (0#1-..#k(x) \p“lm“k’
from (S¥(R™)* ® E) x R"in F x R".

In the previous example of a connection V on E, F is T* ® E so, in the above
coordinates, T* @ E} (¢ ~ (IR")* ®E,x R" and elements of T* ®Er ¢ are
represented by (gbv, x*) where | are n elements of EO. Since ol(V) is the identity
mapping of 7* ® E, it corresponds to (y,, x*) = (¢, x*), sopl(V) J(E)>T*@E
is of the form (Y, ¥, x*) b (¥ + Av(x) ¥, x") where A (x) are endomorphisms
of EO. Thus if x — y{x) represents a local section s of E on (, V s is represented
by x auxl/(x) + A (x) Y(x) in these coordinates. Furthermore the curvature

xH)

1
§2 of V corresponds to the 2-form Y Fw(x) dx*® A dx"? where

P

F(x)=28,4,(x)—8,4,(x)+ [4,(x), 4,()].

MY

3. LINEAR PARTIAL DIFFERENTIAL EQUATIONS

3.1. DEFINITIONS. Let £ be a smooth vector bundle over B. A regular k-th order
linear partial differential equation on E is a smooth sub-vector bundle R of
JL(E): a (local) solution of R is a (local) section s of E such that i¥s is a (local)
section of R.

Let /7 be another vector bundle over B and let L € @k(E, F) be regular; then
ker pk(L) is a regular k-th order equation on £ and s € I'(£) is a solution of
ker pk(L) iff - Ls = 0.

Now if R is a regular A-th order equation on £, then Jk(E)/R is well defined
as vector bundle over B and, if » :Jk(E) —>Jk(E)/R is the canonical projection,
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then # <% is in f;/‘k(/,'. Jk([:'),"l\’) with kcrpk(r oy = Rundif L ¢ LBy s such
that Kerp (L) = R.L factorized through » w75 and an mjective vector bundle
homomorphism  J(£)/R — /. Thus it is elear that if R = Kerpel. then

R =Kerpp, (GY 2 LT () does only depend on Rin fact we have:

ROV =JuRY N

e Y G S U )

RV iscalled the Y-t prolongation of R it is generally not a sub-bhundle ol A

but only a family of subspaces of oo (EY over B When, for all integers €2 0.

R is a vector bundle over B. the equation R is said to be complerely regular.,

3.2. Notations and remarks

1. One may define a (non-regular) A-th order lincar partial differential equa-
tion on [ to be a fumily of subspaces u_f\/k(l;‘) over B by this we mean a subscet
R of .1A (£) which contains the zcro section of .lk(E) and which 1s such that. for
any b €8, R, =R ﬂ.lh‘k(li) 15 a linear subspace of J, (£} A tlocal) solution
of R is again in (local) section s of £ satisfying j[)/"S € R, . for b €8 (in its domain).
Thus if R is a k-th order regular equation, then R is a (& + €)-th order equation

which is generally non-regular but which has the same (Jocal) solutions as K.

2 Le EZk(E. F) is a differential operator, we shall speak of «the equation
Ls =0» to denote the cquation kcrpk(L). One must be aware that different
differential operators eventually correspond to the same equation.

3. It follows from the definition that, if R is a A-th order linear equation
on F£. we have ﬂfjf*"’(R(“m’) CR™_ ¥Y¢. m>=0. but, in general, nlfj_:*'”
is not surjective from R“*™ to R (ie. the inclusion may be strict). (The

next definition will avoid this non-surjectivity ).

3.3. DEFINITION. A regular A-th order linear partial differential equation R
on FE is said to be formally integrable if it is completely regular and if for any
¢=0 ﬂ,{‘if !induces a surjective map of R“* D on R (e nfF (RO 1=

=R,

The origin of this terminology is the following. Let & be a point of B(b € B)
and let us try to solve R by Taylor expansion at b. We may identify Rf* with
the set of coefficients of Taylor expansions to order A 4+ ¢ satsifying R to the
corresponding order at b. indeed if s is a local section of £ around b with
AN €R(Y. then s satisfies R modulo sections vanishing to order & + ¢+ 1
at b. But in order that each element « of RZ()” could be interpreted as the Taylor

cxpansion to order A+ € of some local solution & one hus to assume that
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there is a # € R{** V' corresponding to Taylor expansion to order & + £ + 1 of
5. 50 since w{‘it* Pojhtetd_ jhss ]’::L” 1% = u. Thus, apart from

complete regularity which is natural in the framework of Taylor expansions.

, such that m

formal integrability is just the condition needed to formally solve at any order
the equation at b by starting from any element of Rg“ and this for any ¢ > 0 and
any b € B.

Let R be a k-th order linear equation on £ and suppose that R is formally
integrable; this means that, given ¥ >0, b €Bandu & ngﬁ’, there are no algebraic
obstructions to the existence of a solution s of R in a neighbourhood of b satisfy-
]-}ic +
true) at the «smooth level». This is, however, true at the «analytic level» as one

ing s = u. Unfortunately, it is not always the case (although this is often
may guess, (it is a consequence of Cartan - Kdhler theorem). Let us make this
precise. If B is an analytic manifold and £ is an analytic vector bundle over B,
a k-th order linear equation R on F is said to be analytic if R is an analytic sub-
vector bundle of Jk(E); an analy tic (local) solution of R is an analytic (local)
section of E which is solution of R. With this terminology the result is the fol-
lowing [11].

3.4. THEOREM. Let R be a formally integrable analytic k-th order linear equa-
tion. Then, for any integer =0, for any b € B and for any u € R{¥, there is
a local analytic solution s of R in a neighbourhood of b for which we have:
s =u

3.5. DEFINITION. Let R be a k-th order linear partial differential equation. Then
N=RNS¥T*e F is called the sywmbol of R; it is a family of subspaces of
S"'T*@E(CJk(E)) over B. Notice that if R =kerp (L), for L G_@k(E,F),
then N =ker 0,(L). The symbol N of R does only depend on N since
we have N = S*T* @ N N SK+LT* 8 F as easily seen: N9 is called the %-
th prolongation of N.

We shall see that the obstructions to the formal integrability of R take their
values in a family of spaces over B which does only depend on N.

3.6. PROPOSITION. [10] Let R be a regular k-th order linear equation on E.
Then, by using the canonical inclusion Jk(E)CJm(Jk_m(E)), l<m<k R
may be considered as a regular m-th order lincar equation on J (E), its £
-th prolongation is again RY considered as a (L + m)-order cquation on
e om C(E)CJm 2 oM Zp EM). Furthermore, for any solution
s of R as k-th order equation on F, j*~"s is solution of R as m-th order equa-

—mn
(£), (by using J,

tion on Jk—m (E) and conversely, for any solution § of R as m-th order equation
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on Sy AE). there Is a solution s of R oas k-th order cquation on 7 jor which

‘/-kf'm‘

1t s, in fact. a very old trick and it is casy to prove.

v = 5. This proposition allows to replace any equation by a tirst order onc:

Another casy useful result is the following {11].

3.7.PROPOSITION. Let R be a regular k-th order linear cquation and supposc
that its $-th prolongation. RV is also regular. Then we have: (R )71 = g+ n

3.8. Example

Let V be a connection on the vector bundle £ over 5. (see in 2.6). and let
us consider the regular l-th order linear equation R =kerp (V) on £. The
(local) solutions of R are the (local) sections s of F satisfying Vs = 0. they are
called fiorizontal (local) sections of E tor V. Since UI(V) is the identity mapping
of T*® E on itself, (see in 2.6). it follows that the symbol N of R is the zero
section of T#* @ £ N = 0. This implies that the symbol MY of the £-th prolon-
gation R of R also vanishes: A% = 0. It follows that Tt Pinduces an injective
mapping of R in RE7P forany €= 1.(V = 0RO R Dyfor €= 0.

Tré induces a bijection of R on £ (since it is surjective as it follows from 2.6). In

order that nti f induces. for any ¢ = 0. a surjective (and therefore biective)
mapping of R" on R it is therefore necessary and sufficient that 7"

induces. for any ¢ > 0, a surjection of R on £ 718* Vis then an isomomorphism
of R'Y on E and R'Y is regular. Thus R is formally integrable if and only if
TR ) = E. V0.

Since s — §ls factorizes through s ~jloVs and a bundle homomorphism. it
follows that Troz(R‘”) is contained in (it is in fact ecqual to) the subset
{9cE|Q¥9=0] of E: s0 wg(R‘”) =FE implies §2 = 0. Thus in order that K
be formally integrable it is necessary that §2 vanishes. This is also sufficient
because. as it is well known, if £ = 0 then £ admits dround any point of B
local trivialisations £ }( ~Egx (¢ in which ¥V corresponds to the usual diffe-
rential of vector valued functions so, in these trivialisations. the horizontal sce-
tions are the constant E-valued functions on (". This also shows that, in this
case, formal integrability implies local resolubility in the sense of theorem 3.4
but without any analyticity assumption.

In some sense, formal integrability of linear cquations are generalisations
of zero curvature conditions and it is useful to known when a non-lincar partial
differential equation is exactly the formal integrability condition of a lincar
one because then its propertics rely to properties of the corresponding linear
system. We shall sec that Einstein equations and Yang-Mills equations are non-
-linear equations of this type. Furthermore we shall show that pure Einstein
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equations and pure Yang-Mills equations may be written as zero-curvature con-
ditions for connections on appropriate vector bundles.

3.9. DEFINITION. Let N € SKT% @ E be a family of subspaces of S¥T* @ E over
B, (see 3.2); N will be called homogeneous if, for any pair (b, b') of elements
of B, there is (at last one) an isomorphism of vector spaces of 7,* on 7;",‘ and
(at last one) an isomorphism of vector spaces of Eb on Eb such that the cor-
respondig isomorphism of S¥T.* ® E, on ST ®E, . induces an isomorphism of
N, on N, ;it then follows that the corresponding isomorphism of Sk+ ‘T*®E, on
Sk+ ‘T,* ® E,. induces an isomorphism of N on N9, for any 2> 0, where
NO =T+ NNSK+'T* @ E. All the equations that will be considered in
this paper have homogeneous symbol which implies, in particular, that the N®
are vector sub-bundles of the S¥+ T* @ E (¢ = 0).

4. COMOLOGY OF SYMBOLS

4.1 In the section we describe spaces associated with symbols which will be
useful for the analysis of formal integrability of linear parital differential equa-
tions on E. Since the constructions are pointwise on B, i.e. are carried over
each point b € B, it will be convenient to drop the label b and to consider that
T, T*, E etc. ... are fixed finite dimensional vector spaces which will be later
the fibres of (the corresponding) vector bundles over a point b € B. Thus now
T and E are finite dimensional vector spaces and we call E-valued k-symbol on
T or simply k-symbol when no confusion arises a linear subspace N of S¥7* ® E
where S¥T7* ® E is the space of symmetric k-linear maps of T¥ in E. The &th
prolongation N© of N is the space of symmetric (k + £)-linear maps
Y TF Y S E (e ¢y €SFY4T* & ), such that

(vl,...,lg,)r—»x}z(vl....,Uk.ka,...,ka,)

is an element of N for any v
pare with 3.5):

PRV v, , € T. In other words we have, (com-

NO =S T*e NNSk+HT* g F.

N s a (k + ©-symbol and we have (N())m) = N (&+m)

4.2 Let us define linear maps [9]
8 AST*@ STT* 5 ASTITx@ grol *

by 6(@1 VAN /\ws (W) )=w /\wl/\ o /\ws @(w) 1 for r=1. We write
S(AT*) =0 for r = 0 and, more generally, we make the convention S™'7T*% =0
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~ b
forr = 1. (s = 0). We clearly have 6 < = 0 so the sequences
O SIFSTs o T SIPS s L NS L ST
are complesesof vector spaces. By tensor product with /7, we obtain the complexes

0 ST STH 0 f) e ASTH ST H s [

4.3, LEMMA. The above sequences are exact forr+s>= 1, e, Im(d) = Ker (6),
This is the formal Poincaré lemma for Taylor expansions at the origin of 7 of
F-valued differential forms on 7. Indeed un element of AST* @ S7T* & [0 s
canonically a F-valucd s-form on 7 which is homogeneous of degrec r as function
on 7, the operator & corresponds to the exterior differential. Since the usual
homotopy of forms corresponding to dilatation of T preserves the homogencity.

it provides a homotopy for the above sequences.

The s-form on 7 corresponding to w A ... A w2 (w)"is
[w (x)]”
N w/\.../\wSA
r!

4.4. DEFINITIONS. Let N be a E-valued A-symbol on 7. We have by definition
§ 4T*eN)=N"Y and therefore 6" 1 (T*o NW)=NCT D CcghridlTs ey
This implies in particular that we have §(A’T*@eN)C A IT*a N 1
(by convention N'© = Ny, for > 1. The Spencer [9] cohomology of N is the
cohomology of the sequences. (called d-sequernces of N).

] & & & &
0-NO Lprene-n L DA NG L L ATRe N
[ .
— AT eghT T o F,

The cohomology at AST* @ NY“75) of above sequence will be denoted by
H* 57 LS(N); thus

H"S(N)={a € AT* NUTD [da= 0YS(ASIT* N

are defined for r>1 and s> 0. N is said to be p-acyelic if H"*(N) =0 for
0<s<p.r>1;it is said to be involutive if H"S(N)=0foranys>0andr>= 1.
(i.e. if it is dim (T)-acyslic).

4.5 PROPOSITION. Let N be a E-valued k-symbol on T and m be an integer
with 1| <m < k. Then, by using the canonical inclusion

SkTxcsmr*eSk-mT*e [ N may be considered us a Sk—m T & Eopalued
m-symbol on T: its $-th prolongation is again N considered as a Sk=m T e p.
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-valued (m + Lysymbol on T, (by using SKTIT* c §M+iT* g Sh—m Ty [y,
thermore the Spencer cohomology of N is the same as the Spencer cohomology
of N considered as a S¥~" T* ® F-valued m-symbol on T.

This proposition follows easily from the definititions. The first part is the
«symbolic» counterpart of proposition 3.6.

4.6. Remarks

1. One must be aware of the fact that, if N is a k-symbol, there is a shift of
k — 1 in r in our definition of H™%(N) with respect to the one of other authors,
the last proposition is the very reason for our convention.

2. 1t immediately follows from the definitions that we have H"%N)=10
and H1(N) = 0, i.e. any symbol is 1-acyclic.

3. We have HS(N)) = H"*%“S(N) forany r > 1 and s > 0.

4. Up to now, if N is a k-symbol, H"P(N) are defined only for r > 1, it will
be convenient in the following to define H %P (N) as the cohomology of

AP IT* e N APT oSk 1T 6 E —20y APTIT* 05k 2T* 0 F
E for k=1

forp>1and H%ON) =
0 for k=2

Acyclicity and involutivity still refer to the H"*(N) forr > 1.

4.7. DEFINITION. {17] Let (e,,...,e,) be an ordered basis of 7. For any
FCS'T*®E, we denote by F, F the set of Y €F such that

(ey... €p)

! ) H - - "
w‘%~”1--~-~f"rv1)—0’ Vs < m. ((1,...,('") is saild to be quasi-tegular for

N(C S*T* ®E) if dimND = "s! dim N, + dimN; this is equivalent to say

m=1

that the maps N“’L”—A are surjective for O0<<m<n—1, (where

6, ¥ ...v)= w((m, 1+ - -« Y ), d.e. that we have exact sequences
'\(1) - 7\v(]) P41 N 0
0— m+ - m > m — V.
4.8. LEMMA. If (e, .., ¢, is quasi-regular for N, then it is quasi-regular for

NO (¢l = 0) Proof by 1nduct10n
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4.9 THEOREM. [17] N is involutive it and only if it has a quasi-regular basis

The proot that existence of a quasi-regular basis implies involutivity is casy.
by using Temma 4.8. The proof of the converse in more difficult. By using this
theorem. one proves.

4.10. THEOREM. [10] Let N be us above: there is an integer u (= 0y depend-
ing onlv on k(= order of N)., n = dim T and dim E such that N is involutive.

le. such that we have

H5N)Y=0, VYrzu+ 1, (Vs=0).

4.11. Remark

Let 3% denote the partial derivatives of order & on 7 with respect to vector
basis; if f is a smooth E-valued function on 7. then 3*f(x) is for any v &7
an element of S¥7* @ E. Consider. for a E-valued k-symbol \ on 7. the equation

Ffx)eN. VYyeT & .

Then N may be identified to the set of solutions of ( &) which are homoge-
ncous polynomials of degree & + € therefore A?T#* & N corresponds to /-
-valued p-forms on 7 with homogencous coefficients of degree & + ¢ satisfying
((fN) and & corresponds to the usual exterior differential. Thus e H7S5(N)Y is the

$=20
cohomology of E-valued differential forms on 7 the coetticients of which are

polynomials of order A (and of arbitrary degrees) satistying ((5;\, ).

4.12. Examples

In all these examples ('c“,) w=C(1.....n)is a basis ot T. the Bu denote the
partial derivatives 9/0x* at the point x :A\'“(’MET and we identify tensorial
objects on 7, T'* with their components with respect to (¢ ) and the dual basis

(writing for instance v = (x*)).

1. Let £ be S T* @[ where [ is some finite dimensional vector space and

let N be the E-valued A-symbol
N=SkmTra P CSKTH o (SMT* & by

then N is involutive by Lemma 4.3 and proposition 4.5. The corresponding

equation ( é’v), (as above in 4.11). reads

0 ...0 (0. v ()= oy
1 £

: (v )) o= .
My Mg 1 & TPty 1

) ,
L\l]. .I,”

2. Exterior differential symbol. Let us denote & acting to the right by
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8 STT* @ AST* 5 ST 1T @ ASTIT* et Nlpl C T'* @ APT* denote the kernel
of 8" :T*@ APT* > APTIT* N, is a APT*valued l-symbol on T3 its ¢-th
prolongation Nlp]m is the kernel of & :S**1T* @ APT* 5> S°T* @ AP 1 7%,
On the other hand N,{% = is, by the formal Poincaré lemma 4.3, the image of

lp+1]
8 SYT2IT* @ APT* 5 ST 1T @ AP+ 1 T*, thus we have short exact sequences

4D S 02k o AP TR O A (D)
O_)N[Pl — S T* 2 APT ———>]\[p+1]—>0

by tensorisation on the left by the A?7T* and using the fact that 08 =848
we obtain the short exact sequences of 6-complexes

5 roo T

0— AIT* @NEHD — A9 T* @ 50+ 27 @APT* —— A9 T ®N 9, —0

5 5 5
0— ATHIT* ON(O s ATFITH 6 SHIT* 8 AT —s AT 1T*® NUTD 50
r

6 5 5

The complex in the middle has trivial cohomology (again by lemma 4.3) and
therefore we have H°F Lq(N[le) ~H* e+ 1(N[p]).

Thus H* I*Q(Nm) ~ HFH g *P(No)» Y24q,p>0. On the other hand,
N{O] ={0jCT*®R=T* (8 :T*=T*@R > T* is the identity of T*), so
NG =10} C S 1T* @ R = S+ 1 T* and therefore

H’*S(N‘p]) ~H'" p*”p(N[O]) =0, Vr>1, ¥s,p>0; in other words N{p] is
an involutive A? T*-valued 1-symbol, for any p = 0.

The corresponding equation (éDN[p]) reads: dw(x)=0 x > wXxX)EAPT* is a
p-form on T and d is the exterior differential.

3. «Killing symbol». Take E =T* and consider the l-symbol N defined
by N=A2T*CT* @T*,
One has NV = T* e A2T* nS2T*@ T* ={0}, so one has N¥ ={0}, V&> 1.1t
follows that one has H™*(N) = 0, Vr > 2 but Hb2(N) is non-trivial (1 2(N) # 0);
thus this symbol is not involutive. The equation (éaN) reads: (x — (wﬂ (xX)eT*)

auw,,(.\') + al,w”(x) =0.
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4. Maxwell (spin 1) symbol. Let g be a non degenerated symmetric bitinear
form on 7" with matrice (gw‘) = (gle, e and let (g""y be the inverse matrice.

Let £ be the space 7% and N\ be the 2-symbol

N={d,, JES T e T g, —A 1=0]

Al r A,

One checks that a basis (cu,) in which. for instance tg,,) is diagonal, is quasi-
-regular for N. Thus N is involutive. The corresponding equation (&) reads,

gMa,(8,4, (x)—3,.4 (x)=0.

S. Linearized Einstein (spin 2)-5_1'mb0l. 3. 5] g being as above, let £ be the
space S2T* and N be the 2-symbol

h h ) = 04

Mt‘/uf— A

N ={0,, ,)ESIT* oS T*|g"h + 1

Ap.ur )w,,up*
One checks again that a basis (e“) in which (g,,) is diagonal is quasi-regular for
N.so N is involutive and the equation (é”N) reads:

g,\u{a}\(aphw(x) + 'dl,/z“p(.\') - a“/zp”(x )y — apa“/zw(x)} =0

6. Dirac (spin 1/2) svmbol. g is as above and Eg denote a space of (irreducti-
ble) representation of the Clifford algebra of g. i.e. a vector space such that we
have a linear mapping v : T — End (Eg) satisfying y(x )y (1) + vy (v )y(x) = 2g(x. )1
forany x,v €7, Yy denotes 7(0”). so have y(x) = 7‘1,\"“ Let £ = Eg and consider
the 1-symbol N defined by

N={W,)eT* E|g" vy, =0

One verifies again that any basis (e”) in which (gw) is diagonal is quasi-regular
for N'so N is involutive and the equation (&),) reads:

g“‘y/\a“w(.\') = 0.

7. Rarita-Schwinger (spin 3/2) svmbol. 6] g, Iz'g. ¥ being as above. let [0
be the space T*® Eg and N be the 1-symbol

¢ 1
BRI/ Y= 0
1 Cp o3 M

A :{(VD“.I.)ET*@'(‘T*@Eg)i 60]‘ S ’3‘“'“7

Qa

where €77 is completely antisymmetric (¢ '""7) € A" T) with el 2" = 1|

Again, this is an involutive symbol because any basis in which (gw) is diagonal
. . a,.a A L

is quasi-regular for N. The equatlon(gN) recds e V0 3M R 3d“x,u,,(.\‘) = 0.

T -~ 1 . + . .
or, by, introducing ¥ (x) = x,’/“ (x)dx* vy = 7Hd.\'“. and the CXICFIOIT differential d.

—_——
n--3
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4.13. Remarks

1. The dimensional computations in the examples 4.12-4, 5, 6, 7 to verify
the quasi-regularity of (cu) when (gw) is diagonal are straightforward although
tiedous. They are simplified in such basis (where 8, is diagonal); this does not
mean that other basis are not quasi-regular, (I simply verified that it was O.K.
for such basis).

2. Let £’ and E” be two vector spaces and let V', (resp. N”), be a E'-valued,
(resp. E"-valued), k-symbol on T, then we have:

a) N'oN"isaE' @ E"-valued k-symbol on T and
HS(N' o N"y=H"*(N"Ye H$(N");

b) N'® E”isa E' ® E"-valued k-symbol on T and
Hr,s(]\/vr ®EH) :Hr’S(N,) ®E”.

3. Notice the following:

a) The T*-valued 2-symbol N on T of example 4.12 - 4 contains the 2-symbol
S3T*ie. S3T*C NCS2T*e T*,
b) the S2T*-valued 2-symbol N on T of example 4.12 - 5 contains the image of
S3T*e T*inS2T*® S2T* under 5 :S3T* ®T* > S2T* 0 S2T*

o : 3 2 2
A((waﬁb,'y))uu, Ao = P p T Wy o1 MS’T*®T*)CNCS*T*eS5T*,
¢) the T* ®Eg-valued I-symbol N of example 4.12-7 contains the l-symbol
SIT* ®E, CT*@T*®F ,ie. SIT* ®E,CNCT*®T*®F,.
These properties are connected with gauge invariance [3] of corresponding equa-
tions and may be used to give another proof of the involutivity in these cases.

4. By their very definition, (see in 4.11) equations of the form (é"N) are
formally integrable equations.

5. Scalar symbols. Let N C S¥T* be of codimension 1, i.e. N =kero for a
linear form ¢ €S¥T on S¥T* with 0+ 0. Then there is a w € T* such that
o(wk)£0s0 S¥T* =N e € wF and, if (eu) is a basis of T satisfying (e“, w)=0
for p=1,...,n—1 (=, W)+ 0), (e“) is quasi-regular for N; this follows

143 k+1*6 * k*ld@o * 3 :
from the fact that the composition § T* —T*®§*T* —— T* is surjec-

tive so dim (S¥*17%) = dim (ND) + n. Furthermore, the same argument shows
that we have 8(S¥+*17*) + T* @ N = T* ® ¥ T* and therefore H*2(N) = 0, so
H"YN)=0,¥Yr=0.
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5. INTEGRABILITY CRITERIA

Let £ be a (smooth) vector bundle over B. Then we have the following result.

5.1. PROPOSITION. [9] There is a unique linear mapping

(o (BN = TUT* ® J (L)) satisfying

a) [)(;‘~5):df‘s«n;'*“‘(,swf/)s, for any fe€C™(B) and sl (.

b) Dojk+120.

The uniqueness is clear since if D' is another mapping with these properties,
D — D" is by a) C”(B)linear (i.c. it is a vector bundle homomorphism) and by

k+1

b) it vanishes on Imj which spans Jk+ ](E) so D — D" = 0. For the existence.

we choose coordinates (see in  2.7) and write Ds:d.\‘“l)lls(.\‘) with

D, sy, = a“s“]__‘ym(.\-» “Suu o, (V). Y<Kk e Dsois the pull
back by s of the canonical Ji(£)-valued one form 6 on S B Ds = s*0.

By a). D is a 1-th order differential operator from J__ (/) in T* = J k) with
symbol o ([)) =lde& 7r"+l T* ed, ](1 Yy TreJ(E), Ds=0 1 equivalent

tos = ]" +1 5y for some local section S0 of £.

One extends D to '(AT* @ J (£)) by imposing
Dwes=dw ®77]‘+ )+ (— 1YY wADs for w&l (AP T*).
sel, ((E).vp.s=0and D I'(£) = 0. We then have:
DU (AP T*eJ,  (ENCE(APYIT*® J(E) and D=0
So we have the complexes

rts

. j . D Do . . I
0—T(E) T, (EN—— == DANT* @S (EN) — . (h, )

5.2. LEMMA. The above sequences are exact.
Notice that if s €T(S¥+1T* @ F) then Ds = — 6s € [(T* o SKT* » [). Consider
the following diagram:
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0 0

l !

0-T ™7 e ) 5 O T(AT*e ST IT*e E)— .

| | |

r+s+1

D D
0-TEY 0Ty, L (E) 5. ST T el (ENS. ..

|
iid Ln;j_;“ jide LA
D D D
0-TE) ST, (B> .. = TAT*0J (E) — ...

| ! |

0 0 0

This diagram is commutative and the columns are exact so we have a short exact
sequence of complexes

0—%€ —> € €. —0.

—_
r+s+1 “rts+1 r+s

By 4.3 we know that the cohomology of €, ., ;(0 vanishes which implies that
the cohomology of €, ., is the same as the one of €, ., and therefore, it is
the same as ihe cohomology of (¢)

- ;0

.
0—T'(E) =, I'(E) — 0 which obviously vanishes.

5.3. LEMMA. [14] Let R be a regular k-th order linear partial differential equa-
tion on E and suppose that its %th prolongation, R'®, is also regular. Then, a
section s of J , o, |(E) takes its values in R * D, (ie. s() €R{™ V), if and only
if we have: ﬂ,{‘:é tlog(h) e R(“) and Ds(b) € T* ®R(Q), foranyv b € B.

Consider the following diagram

/ k+Q(E))\
A
k+i’.

H ﬂk+Q+1
k+¢
Jk+ £+ I(E)

k+2+1y (seein 2.3-1), andp~7r A OS¢ ) B A VS

k+¢
Th]s dlagram is commutative and nfjf* 1is the restriction of

A CN ) R (E) to J, 1(E) CJ U, BN It follows that we have

i a1 (D)

where A = J (7

k4 ¢ k+¢ k+ 0+
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77{1' SN uh = 0 and therefore that A maps W o [Ee S
By using. for instance. the coordinates expression of /) given in S0, we see that
we have A - = P :./l(.lk ORIV DI AL oo U The lemma then follows
from this und from the fact that we have, by proposition 3.7

REFD e JUR SNy Pl ) — (R

5.4, Let R be a regular A-th order linear partial ditferential cquation on /7 twith
Az 1) and assume that the symbol N of R s homogencous (see in 3.9). Then
the N are sub-vector-bundies of the S¥TY7# @/ and the mappines
St =8 AT N[ - AP ! T e N[ U have constant rank b E B tor
¢= 0. where we make the convention NV = SF7 7% 1 it follows that
AN 1‘”(_\'/) )= Rer (8,77, B-P* ](.\'b) = Im(o, ") are the fibers of vector bundles
and that the same is true for H“"’(t\'h = Z"”(.\'h),’B“1’(A\’h) for any Lop = U,
(the A\'O"’(A\'b) being defined in remark 4.6 - 4). We denote by Z75(N), B7HN)
and H™%(N) the corresponding vector bundles over B. Although we are here
interested in equations with homogeneous symbols we come back to the generul

case to formulate the next general results.

5.5. In the following. if R is a regular A-th order linear equation. we shall denote
by T(R™). (resp. I'(N™)) the subspace of T'(J, | (£)). (resp. of DSk C 7w ),
which consists of R“-valued sections. (resp. of N ™-valued sections). and we
make the convention RV =/, _ (£) and NP = SETLPr e 0 ki always
assumed to be greater or equal to .

CR™Yy and T(A'Y) are C™ (B)-modules (for € = — 1) and we define similarity
CAPT* @ Ry and TAPT* @ N9 e,

FAPT*e RUYD )y =T(APT*) © " MR and

(APT*o Ny =T(APT*) o TN (pz=0 Lz 1)
C(B)

We have DIVAPT* 2 ROy Cc TAP 7% 2 R U9 and the

b APTF e NET RS VAR ¥ 591\';“ (h & B). defined as in section 4. induce
homomorphisms of (7 (Brmodules again denoted by

§ TAPT*e Nt S TAP YL e XY wtisfying &7 = 0. We denote Iy
["H75(N) the C™(B)-module

PHSN) = L @ TOAST* e NV D)8 = 0080 174 N

for r4s2=1 (we put A '7TF =0 and THYNNY = 10 0 A 1 and
P09\ ) =0 if k= 20 (compare with 4.0-4). When Z75(N) and B7 0
are {ibers of vector bundles. b € B. (for instance when N 1s homogencous) the

H7S(N, )y are also fibers of a vector bundle denoted by A7\ and /75N
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is the C”(B)-module of its sections i.e. TH»S(N) = T'(H"$(N)). We also denote
by wf:;“, or simply by 7 when no confusion arises, the homomorphism of
C”(Bymodules of T[(APT*@RE*DYy in D(APT*@RM™) induced by
k+etl . pe+l ¢)
i st RETD L R
5.6. PROPOSITION. Let R be a regular k-th order linear partial differential equa-
tion on E, (k= 1) Assume that R*™V and N9 are vector bundles and that
772: ¢ 1R > RV s surjective for some €= 0. Then R\ is a vector bundle
and there is a homomorphism of C”(B)modules x,: I'(RWY>THYN) for
which we have: wf* I YT(R D)) = ker ().
The kernel of nk{":&il R{Y - RV s N{®, for any b €B, and therefore
R{Y is (by the assumption) isomorphic to N{9 & R{*~V which is the fibre of a
vector bundle; therefore dim R{“ is independent of b € B which implies that

R s a vector bundle. We now proceed to the construction of x,.

Let s be in I'(R'V); then, from the surjectivity of x *¢ =~ we have
Ds=7k7¢ () whereu € T(T* @ RY) is unique up to element of I'(T* ® N(¥);

Du € T(A?T* 9 R“7D) is unique up to ST(T*e N D) (= —DI(T* e N(VY)
and is in fact in T(AZT* e N1y since nDu =D2s=0. Furthermore
8Du = —D?%u =0 and therefore x,(s) =Du + 8T (T* @ N(9Y is a well defined
element of TH%Z(N). Let f be an arbitrary function f€C=(B); then

D(f-s)y=fDs+dfen@)=frw)+ndfes)=nm(fu+dfes)

and D(fu+dfes)=fDu+dfen(u)—dfeDs=fDu where Ds =m(u) as
above . It follows that

x f5)=FDu + 8T(T* @ N(O) = f(Du + 8T(T* e N©)) =1 x (s)

s0 x, is a homomorphism of C” (B)-modules. If we have s = 7(3), 5§ € T(RU*D),
then we can take u = DS above, which implies Du = 0 and therefore »,(s) = 0,
so we have w£:§+1(F(R(Q+1)))C ker (x,). If x(s) =0 then we can choose u
such that Du =0 above so u =Dv for some v 6F(Jk+Q+I(E)) (by Lemma
5.2) and therefore Ds = m(u) = Dn(v); so (again by 5.2) we have n(v) — s = ]'k * Qso
where s, ET(E). Define §€T'(J,, , (E) by §=v —jk+®*Ls0 we have
Di=Dv=u€el(T*®R®) and n(s) =n@)—jk* ‘s =5 €T(R) which, by
lemma 5.3, implies § € I'(R“* D). So we have 7 F {* {I(R(**V)) D ker (x,) and

therefore the equality W,{‘: STUTRC* D)) = Ker (x,).

5.7. COROLLARY. [10,11.14) Let R be a regular k-th order linear partial
differential equation on E. Assume that N and NV are vector bundles and that
H"z(Nb) =0 for any r>=1 and for any b € B. Then R is formally integrable if
and only if we have: nlf IRy =R,
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The necessity of the condition follows from the definition. By the same argu-
ment as in the beginning ot the proot of 5.0. n]f LR R implies that RYP
is a vector bundle. Assume that N are vector bundles tor €< m and consider
for cach b € B the sequence

am+ ) s ) 7 A2TR o nim Ik e o\ tm=2)
02N — L* & N} —SATFON, — AT ‘._\/.‘”

e 3 g on AT —2) 2 7% o A - 1) .

/ & ®
L A 7pent 25 AT e N D) g
This sequence is exact so we have

dim {7 L gim (AT e NPT D S (AL TE e N ) = O

independent of & so dim ;\';)'”H’ = (" independent of b since both terms are

b

upper semicontinuous and therefore N *1 js also a vector bundle. Thus all

N are vector bundles. It follows that
[(T*ea N, _;’_, CIA2ZT* & A=) __, AT T* 2 N2y

are also exact for m > 1 and thus TH™2(N) =0 for r= 1. Assume now that
R are vector bundles for 0<<¢<<m and that ﬂ’]}:; N ROy = RCY pop
0<k<m—1. Then by 5.6, FAF:,;:'H(I‘(R”” Ty = RYY which implies

that W}f:_:"::z FURMEDYy = R and that R D s 4 vector bundle singe N7 D

is a vector bundle. So ﬂ}f Ry = R implies formal integrability.

5.5. COROLLARY. Ler F be vector bundle equipped with a connexion NV and
let o :T*e E—>F be a vector bundle homomorphism such that its kernel N
is a vector bundle. Let R = Ker pitae V) C Jl (E). R is a regular 1-th order equu-
rion with N as symbol and ﬂf(’lﬁ(‘R”')) = TRy if and onlv if VI (NYand QLTE)
are contained in §I'(T* & N), (§ is the curvature of V).

We have né(R) =£E and p, (V)= 715 is an isomorphism of vector bundles of
JUEY on (T* & Ly E (see in 2.6): under this isomorphism K is mapped on
N % £ and the mapping x, of 5.6 (the conditions of 5.6 are satisfied for & = 0.
Kk = 1) corresponds to mappings xol TN) = THO2(N) and ;{g )= THY 2N
which must vanish whenever nf(r(R Dy = T'(R) by 5.6. Now

D T‘(JI(E)) - I'(T* ® E) corresponds to

(— I+ V T(r*s F)ya ')y -T(T*»s k)
under the isomorphism and so starting with s &€ l(R) corresponding (o
w; T wy € (T*e L)+ T'(E) Ds = Vwo — @, and we can choose. (see in the
proof of 5.6), u € IN(T* @ Ry~ 1(T*2 T* s L)y« 1(I* @) with wte) — s
to be itself represented by Vojo — w under this isomorphism and therefore
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Du=V%w,—Vw,=Qw,—Vw, €T(AXT*& E) (= I'(Z*2(N))). Thus we have
%)W) = Qwy+ 8T(T*®N) and x)(w;) =—Vw, +8[(T*@N) from which
5.8 foliows.

5.9. Remarks

1. All the mappings involved above are local, so one may replace B in the
above statements by any open set (#C B and finally write the corresponding
results at the level of sheaves theory for germs of sections.

2. The H" 2(Nb) are generally not easy to compute and it is hard to know
whether they vanish;itis why involutivity is important because it can be checked
more easily by applying lemma 4.8. There exist however 2-acyclic symbols
which are not involutive {18].

5.10. Let R be a regular k-th order linear equation on E; R will be said to be
transitive  whenever wf_ :R—S*¥"IT*®E is a surjection, (ie.
nl’(‘_l(R) =Sk-1T* o F). For instance, regular 1-th order transitive equations on
E are typically of the form R = kerpl(o o V), as in 5.8, for some connexion
V on E and some ¢ :T*® E - F such that N = ker ¢ is a vector bundle and
the first obstruction to formal integrability is xO(R)eH 0, 2(N); the corollary
5.8 just gives a convenient way of representing x(R) = 0.

In the following we shall be interested in transitive regular k-th order linear
equations with homogeneous symbols so let R be such an equation. As pointed
out in 5.4, the H’*‘(Nb), (defined as in section 4), are the fibres of vector bundles -
H"$(N) and the I'H"*(N) are the C~(B)-modules of sections of the H"*(N);
it follows that under the conditions of proposition 5.6, x, gives, (since it is
C=(B)-linear), a vector bundle homomorphism again denoted by
x, 1 R™ > H%2(N), which must vanish in order that m : R¢** D 5 R be surjec-
tive; then, R™*D is a vector bundle and we have %, , :R(**D - HL2(N)
and so on ... Since we know, by theorem 4.10, that H™ 2(N) = 0 for m>u
where u only depends on dim (B) and rank (£), the formal integrability condi-
tions of R read:

I, (R)=% (R) =0

I (R)y=x (RV)=0
............ (7(R))
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which is a finite system of non-lincar partial differentiul cquations for the «coet-
ficients» of R, (i.e. for map Jk(E) —>Jk(E)/I\’). Thus the lincar system R is formal-
ly integrable iff. 7(R) is a satisfied and this may help tor studving . 7(R) itself.
When N is 2-acyclic. (for instance when it is involutive). 7(R ) reduces tox (R) = 0.

5.11. Examples

1. Let b —g(b) eSsz* be a pseudo-metric on B u a vector field X which
generates infinitesimal isometriesof (B, g) is called a Ailling vector field. X is u
Killing vector iff. L, g = 0, where L denotes the Lie derivative. Let w, be the
I-form associated to X by g, ic. wy(Y)=g(X. ¥). In u local chart (¢, x").
LXg = 0 reads V“/\',,+ V“Xu = 0. where X are the components of W, . («cova-
riant components» of X) and V is the Levi-Civita connection. By applying 5.8
one readily sees that if R «is the equation VA + VA, =00 e
R =kerp (0oV)CJ(T*) with o : T*&T* —+S8S2T*_ then nf(R”’) =R (m
fact H%2(N') = 0) but the symbol A’ which is obviously homogeneous has fibers
N, isomorphic to the symbol described in 4.12- 3; so H"™(N) = 0 except for
r = 1. Thus the integrability conditions for R read XI(R”’) = 0 and one verifies
that this is equivalent to constant sectional curvature for g. as well known.

2. Scalar equations. Let L : C”(B) - C~(B) be a k-th order scalar differential
operator with symbol ok(L) eS*¥T such that ok(L)b +0(es* 7). YbeB.
Then N =kero. (L) c S¥T* is a vector bundle with N, of codimension 1 in
Sk7;* for any b€B; by 4.13-4 N{V is of codimension n in Sk”Tb* and
H"Z(Nb) =0,Vr=0,VYbeB. It follows (see in the proof of 5.7) that all the
N are vector bundles (2> 0). Let J, denote the bundle of A-jets of functions
on B; R =kerp (L) CJ, is a k-th order partial differential equation with symbol
N and 7r,{fvl(1‘€)=Jk_1 so, (it is regular, Rb is of codimension 1 in J,). since
HOY2(N)y, HYYN), ... H%23(N), ... vanish, Ris formally integrable, (notice
that N is not necessarily homogeneous). Of course, this result is somehow trivial
because one already knows it from classical analysis of ordinary partial differen-
tial equations.

6. SOME APPLICATIONS TO CLASSICAL FIELD THEORY
6.1. Notations and conventions

Let £ be a vector bundle over B equipped with a connection V: if X € I'(T)
is a vector field on B. V, : T'(£) » I'(E) will denote the composition
v X®ld
['E)— I(T*® F) ——— T'(E).

If (O, x*) denote a chart of B, V, denotes Va/”x :D(EMNC) = T(E] ). There
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is 4 natural connection on the dual vector bundle E*, again denoted by V, cha-
racterized by X (s*, s)= (VXS*,S> + (s*,VXs> for any X €'(T), se'(E) and
s* e T(E*), ({s*,sy e C™(B)). If E'is another vector bundle with a connection
again denoted by V, there is a natural connection on E ®E', (resp. E @ E'), such
that Vy(ses')=(Vys)@s +saVys', (resp. Vy(s+5s)=Vys+Vys), for
any X eI'(T),sel'(E)and s € ['(E").

In the following, B will be a (smooth connected pseudo-riemannian manifold
with pseudo-metric g & [(S27T*); g#:T - T* denote the bundle isomorphism
X+—g¥X=g(X, ) and g, denote its inverse. All tensor bundles @ of B will
be equipped with the Levi-Civita connection, V. If B has a spin structure with
spin bundle &, & is equipped with the canonical connection V associated with
the Levi-Civita connection, the «Clifford product» is denoted by
YE(T*@End.¥), (v(X) v(¥) + v(¥)v(X) =2g(X, Y)) and
Yo T* ® ¥+ % is defined by Yolwoy) =y lw)y for wel(T*) and
Y €F(Y). v, is the symbol of the Dirac operator V=1,°V :T(¥) > (¥).
In local coordinates, (x ), we write g(X, Y) = ng" Y?, g(g#(a),

2.8) = g* B, v(X) = 7, XM v(g,(w) =y w, V=79V,  etc. ... .

Quite generally we shall always denote by V the connections involved, when
no confusion arises, and extend V to vector bundle valued forms as in 2.6. Notice
that there is then an ambiguity between V :[(APT* ®E) > T(AP*iT* o FE)
and the connection: T'(APT*® E) > T'(T* ® APT* ® E) corresponding to the
tensor product of APT* equipped with the Levi-Civita connection with E, the
first is the composition of the second with the exterior product (since the Levi-
-Civita connection is torsion free). We shall avoid this ambiguity by only using
the symbols V > (or V, in local coordinates), in the second case.

Finally there is a Hodge operation s :APT* - A"7PT* agsociated with g
defined by

P40 p,.0
V| det (gM)leyln gtl . gPPw

w
(* )“1"‘ By_pPyPp 0y-%p

Krn—p
with aA*B=BAxa=g(a,B)vol EA"T* Vo, BEAPT*. We extend * to
vector bundle-valued forms.

In the following we shall analyse some linear equations with homogeneous
symbols. The homogeneity will always come from the fact that given b, b’ €B
there are linear mappings 7, - 7,., Jﬁ—» «‘fb, which transport g, on g, and
Y, 0N, -

6.2. General Dirac equation

Let &, Ve V on ¥ be as above and E be a vector bundle with connection.
We have, as above, a natural connection on %’ ® E, again denoted by V; define
VonY ®F by V=v,81deV :[(¥®E)>T (¥ ®E). Let V:Y®FE Y ®F
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be a vector bundle endomorphism and consider the I-th order lincar equation
K = ker pl(Y] + V) on & ®F. in local trivialisation ./ ®Lf‘[\ =(x £ and local
coordinates, R reads

YOOV, )+ T(x) Yix) =0 (R).

The symbol N = ker (v, ®Id) of R is homogeneous and for b € B. Ny 15 the
involutive symbol described in 4.12- 6. By counting the dimensions one easily
sees that Ho*z(;\’b): 0. so since we have ﬂS(R):v‘/ ®L. (YM2=g™") R is
formally integrable (x = 0 VL > 0).

6.3. Rarita-Schwinger equation {6] (Spin 3/2. zero mass)

Let L :I'(T*® %)= T(A" !T*® ) be the 1-th order operatordefined by

LYy=9N...AYAV Y, for y eI'(T*® &), and consider the I-th order lincar
N,
n—3
equation R =kerp,(L) on 7*® . We have WS(R) =T*&.% and the symbol

N of R is homogeneous and reduces for each b € B to the involutive symbol
N, isomorphic with the symbol described in 4.12-7. So R is formally integrable
if and only if 7}(R'") = R or, which is the same here. if and only if % (R) = 0.

Applying V to L ¢ =0 we obtain YyA.. AYyAQ A Y =0 and since VoL
R ——
n--3

factorizes through j! o L. it follows thatm(RVYC R nker (Y A . AYAQ Amy):
in fact there are no other independent equations of order less than one, as can be
shown by using coordinates, and the vector bundle homomorphism

YA AYAQA né R->AN'T* @ Yis essentially % (HO2(N) ~ A"T* e YY),
Thus R is formally integrable if and only if YA.. AYAQ =0 (2 being the

—
n-3

curvature of V acting on I'(¥7)) and this turns out to be equivalent to the vanish-
ing of the Ricci tensor of (B, g) as one can see by using «y-gymnastic». So the
formal integrability of R is equivalent to the Einstein equations for empty space
R, (&) =0[6]

6.4. Yang-Mills equations as integrability condition (3. 4]

1. Second order form [3]. Let E be a vector bundle over B with a connection
V and let L :T(T#* @ EY > T'(A"~17* ® E) be the 2-th order differential operator
defined by

La=(VsNVa)—(—D"Q)ANa, acl(T*&F),

where  is the curvature of V. The 2-th order linear partial differential cquation
R = ker pz(L) CJz(T* ® E) reads in local coordinates and local trivialisation

MV, (V& =V o) —F o) =0,
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so the symbol N of R is homogeneous and for b €8, J\'b reduces, (apart from
a trivial tensorisation), to the involutive Maxwell symbol described in 4.12 - 4.
Again, by 5.7, R is formally integrable if and only if NS(R(I)) = R; furthermore
we have here 1r12(R) = Jl(T* ® E) so %y is well defined (by 5.6) and formal inte-
grability of R is equivalent to »;= 0. Let us describe the vector bundle homo-
morphism x, : R > H%2(N). Notice that

Via=QA«sVa+{— D"V« QD Aa—(xQDAVa=(— D"V «Q) A

and since V o L factorizes through jlo L,

ng(R(”) C ker (o = (V =) A @) and therefore we have

1123(R(”) C R Nker(V *)A 713); it can be checked that the last inclusion
is in fact an equality, i.e. there are no other independent equation in 73(RV).
In fact, we have H®2(N) ~ E ~ A" T* ® E, (via the *-operation), and

%y R - HO%2(N) is described by (V *Q) A 175 :R - A"T*® E. Thus, R is formal-
ly integrable if and only if the connection V satisfies the Yang-Mills equation
without source V *£2 = 0.

2. First order form [3,4]. Let £, V, £ be as above and let
T eT(A"2T* ® End (£)) be a End (E)-valued (n — 2)-form (End (E) = £ ® E*).
Consider the first order differential operator L from (T* ® E)® (A" 2T* 8 F)
in (A2T* ®E)® (A""1T* © E) defined by

LaeB)=TVa-dBeV—(— D" Aa),
foro € (T*®E),BET(A"2T* Q).

The symbol N of the first order linear partial differential equationﬁ = kerp,(L)
is clearly homogeneous and its fibre N’b, b € B, reduces to the tensor product
of the direct sum NL” & Nln—zl of exterior differential symbols described in
4.12-2 with E,; so N is involutive and R is formally integrable if and only if
72RY)=R. n}(R)=(T*® E) & (A""2T* ®E) so x, is well defined and R is
formally integrable iff. x, = 0. We have:

VB—(—D"ZA)=QAB—ZAVa—-(—1)'(VZ)Aa
which reduces on R (by Va— #8=0) to (2 — -*IE)/\B— —D'VZ)A
since, by construction, this factorizes through j! o L (a ® §), we have

ng(ﬁ“)) Cker(@ef m» (- E)AB- =1V TI)A®
and in fact the composition of

@ef > (2-¥ A= (-D"(VE)Aa with w)} R

is a vector bundle homomorphism of R into A"T* ®E which is essentially
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%, TR = HY 2N Thus R is formally integrable it and only iy - = QandVX 0

tic V #82 = 0) which is the first order form of Yang-Mills cquation:
(V)= =0 und VX =0

6.5. Einstein Equations as integrability condition |3. 4. 5. 0|

1. Second order Jorm [3.5). Let A € ITS2T%). then for 1€ IR sufticiently
small. g+ 1l = g, is a one-parameter family of pseudo-metric on & with g - Ly
the Riccl tensor of g + 1 /1. Ric (g + 1 1) € (S 7%), is well defined and differen-

_ o A . R do
tiable in 7 in a neighbourhood of # = 0. Consider i =L /1 = o Ricteg + ¢/,
dr -
L is a second order differential operator from S2 7% in 5 7%,

(L e -5/3(52 T#_ S27%)). which reads in local coordinates:
(L] )M = g"“(v/\ VH /1“’ + \Z\Vl hw — V) V‘J /Iw —- \/N V, /1’\)‘ ).

It follows that the second order lincar partial differential cquation
R = ker /IQ(L) on STT* has a homogeneous symbol N with typical tibre isomor-
phic with the involutive svmbol of example 4.12- 5. Furthermore. we have
7T12(R ) =J (S2T%).s0 %y R — H%=2(\) is well define and vanish whenever
7r23(R'1’) = R i.e. whenever R is formally integrable. By using the identity

v,\.R “pl = V[JRI'p

-V, RM .one obtains

' I
gHIVAL Iy, — =V (L), |=

INIB N A) b il o o s )
g7 g MR NV (2N, g, gh )+ (VR =V R YU —g ¢Wh ).

TV

Since the first side factorizes through jlo L (/). it is necessary  that /‘,p, ={
in order that 73(R'Y) =R, it can be shown that this is also sufficient. (this
follows for insta;lce from integrability of Ric (g) = 0 since then R is the lincarisa-
tion of Ric(g)=0). Thus the linear equation R is formally integrable it and
only if Ric(g)=0. ie. if g satisfies the free Einstein cquations. Notice that
WS(R”) ) = R iff. we have Trf(}\’“' ) :./1(537'*) and, in fact. xR — 1192\
factorize through 7! : R - J,(S2T*%).

2. First order form. In this paragraph. we let g be, as above. a pseudometric
on B but V denotes now an arbitrary torsion-free linear connection on 5 which
is not nccessarily the Levi-Civita connection. (i.e. we do not assine that we
have Vg = 0). (Consider the first order linear partial differential cquation. R.
on S2T* = (T @S2 T*) which reads in local coordinates for
h+ AESAT* 2(TeSIT*):
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Vi, —8,, 0, —8&

AT

A//'u)\zo (Rl)

[377]
A A 5
v)\A ‘“,_VI,A A 0 (RZ)
Notice first that we have: ﬂé(ﬁ):SzT* @ (T@S*T¥*). By (Rz) we have
V,,A)‘MAVH AAM = 0, so that, by taking covariant derivatives of (Rl) we obtain
Ap — A I T D
V&V, h, )=V, (g™V, h, ) which implies
Ap SO A o 3 A
(V,g"67—V g"87) (g, A7, +8,0,,) +&7 (R 8 +R°

A, M

WOV, =0,

where we used (ﬁl) and R‘*{i76 denoteds the curvature tensor of V. It follows
that ﬂé(ﬁ“)) =S27T* e (T®S2T*) implies Vg = 0, i.e. implies that V is the
Levi-Civita connection. Assume now that V is the Levi-Civita connection, then
the system R is just the first order form of the system R of the last paragraph
6.5-1, and we saw there that Wf(R‘“) = JI(SZT*) is equivalent to Ric (g) =0
and that this is equivalent to formal integrability R; it follows that here,
73 (RP)=82T* 2 (T ®S?T*) implies Ric (g) = 0 and, finally, formal integra-
bility.

Summarizing, we saw that for B, wg(ﬁ‘z’) =S27* s (T ®S2T*) implies the
first order form form of Einstein equations Vg = 0, RAM\V(V) =0 for (g, V)
which in turn implies formal integrability of R, and thus, these 3 statements
for R are equivalent.

Notice that, if (g, V) satisfies the first order form of Einstein equations, then
R is the linearization of these Einstein equations around (g, V), i.e. the first
order in e-expansion of these equations for (g + €1,V + €A).

3. Remark

Notice that, in view of 6.3, the Einstein equations are also the formal integra-
bility conditions of the first order system described there [6]. However, in 6.5 - 2,
the symbol of R in a «constant symbol» (it is invariant by diffeomorphisms)
and the «coefficients» of R do only depend. in an affine way, on (V, g) which
are the variables of the first order Einstein equations Vg = 0, R)‘“_M(V) =0
i.e. the formal integrability of R implies both Ric (g) = 0 and the correct «con-
tact condition» Vg = 0. Let us now come back to the structures described in
64-2and 6.5-2.

6.6. PROPOSITION. Let E be a vector bundle on B with a connection ’Vv and let
o I'(T* ®E) —-T(F) be a bundle homomorphism with kernel N Suppose
that the first order cquation R = kerp (o oﬁ) is formally integrables whenever
L WRMO Yy = E forsome U= 1.

4) Suppose that each b € B has a neighbourhood (C B such that E [\ O admits
a flat connection of the form 6 + w with w € I‘(,(AN' ® E*); then R is formally
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mregrable,

b} Suppose that B is analviic. Eois an analviic and that R is a formally integra-
ble analyviic equation: then cach b &B has a neighbourtiood ¢ C B such that
[fr C admits a flut connection of the form V + w with w € l; (N Sy

In other words if A is as above and is analytic., then, formal integrability of
R is locally equivalent to the existence of flat connections in the affine subbundlce

V +NeF* of the affine bundle V + 7# @ £ 2 [* of all connections on 7.

4) is straightforward. if ¢ &£, any horizontal section & for V4w
through { is such that j~ T(s) Eﬁ[‘," since o(V 4+ wis=0:Vs = 0. so
Tyt Ry = F and R is formally integrable.

passing

Lot us prove b). If R is formally integrable and analytic, it follows {from the
theorem 3.4 that. for any b € B and i‘el?h there 1s a local solution s_ of R with
sb)=7{. So let Cloen

of R with Sl(b):(‘l AAAAA S,(h) =¢, then sl(b'), - ‘S,_(bl) are basis l?/‘ m

¢, be a basis of [5/) and let Spee s, be local solutions

neighbourhood of b and there is a unique connection in this neighbourhood
for which they are horizontal: this connection is of the form V + w with
w(b'yeN & £* since by assumption oV s, =0V 4+ w is flut by construction.

6.7. Remark

The above proot of b) shows that, when K is a formally integrable analytic
cquation as above. then there are in general several flat Jocal connections as
above and the theorem 3.4 shows that we may choose these connections to be

analytic.

6.8. Yang-Mills and Einstein Equations as zero curvature conditions

We now show that the systems Rof 6.4-2uand 6.5-2 satisfy the assumption
of 6.6.

1. Yang-Mills. Let us use the notation of 6.4 - 2. Set
E=(T*@E)& (A" IT*@ E)and let

0 T*OE=(Tre T*aE)ys (T*o© A" 1T @ty (AT & k) (A" 1T7%al)

correspond to the exteriorproduct(7* @ T* — AL T *and T+ 0 A" 27% - A" #)
Define the connection 'VV onE by
~ i .
_ , Y v N Ny
Vyla =) = VXa - X)) = ﬁ" VB — Zita)
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where X € I'(7) and i(X) is defined on I'(A'T*) to be the unique C~ (B)-linear
antiderivation such that i/(X) C”(B)1 = 0 and

I(X)w =X, w)yeC=(B)=T(AVT*) for any l-form w & I'(T*): i(X) is extend-
ed to '(AT*® E) by iX)Nwes)=(i(X)w)es, we T (A T*)secT'(E). With
these notations we have L = 0oV so the equation R of 6.4-2 is of the form
R = ker p, (o 0@) and we know from the discussion of 6.4 - 2 that R is formally
integrable whenever ‘ng(ﬁ”") = E. Since we know that this formal integrability
is equivalent to the first order form of Yang-Mills equations, we conclude, by
6.6, that if F is an analytic vector bundle and if V, £ are analytic, then, V, 2
satisfy the first order Yang-Mills equations *V2 =Z and VZ = 0 if and only if
there are local sections w of N @ E such that (ﬁ +w)?=0, (ie. V+wis flat).
Notice that the mapping (V, ) ¥ defined above is an injective homomor-
phism of affine bundles A(E)s A" 2T*® E®E* > A (E), where A(E) is the
affine bundle the sections of which are the connections on E.

2. Einstein. Let us use the notations of 6.5-2. Set £ = S2T* & (T ® S2T*),
Vylh & p) = (Vyh — k(X) p) © Vy A, where

8 — A A
X el kX)), =g, 0,X" +g,00,X"

V is a connection on E. Let ¢ be the symbol of the right hand side of (R),
0 :T*e{S2T* & (T®S2T*)) > (T* @ S2T*) & S2T*. Then (R) reads

go ﬁ (e A) =0 so we have R = ker pl(o o §~7) and we know from the discussion
in 6.5-2 that R is formally integrable whenever ng(ﬁ(z)) = £ and that this is
equivalent for (g, V) to the first order form of Einstein equations Vg = 0 and
R*“‘M(V) = 0. Thus, again by 6.6, if B, g and V are analytic, the (g, V) satisfy
the first order form of Einstein equations iff. there are local sections w of N ® E*
such that V + w is flat ((V + w)?=0).

Let AO(T) be the affine subbundle of A(T) the sections of which are the
torsion-free (i.e. symmetric) connection and Sze T* be the cone of elements of
S27T* which are non-degenerated of signature €. Then (V, g) i—»V is the restric-
tion to AO(T) & S2( T* of an injective affine homomorphism from AO(T) o §ITH*
in A(F).

7. CONCLUSION AND OUTLOOKS

We have shown that the Yang-Mills and the Einstein equations are the integra-
bility conditions of linear systems and that, even more. that can be read as zero
curvaturcs for connections of some types on appropriate vector bundles. This is
to be compared with what happens [2] for the so-called «completely integrable»
systems of partial differential equations in dimension 2. In dimension 2, however,



170 M. DUBOIS - VIOLETTIE

the pure Yang-Mills and Einstein cquations are essentially trivial from the locul
point of view. In dimension 7 greater than 2. one loses the relation between
Zzero-curvature and conserved quantity (because. then. we have n](A\'” o,
There is nevertheless a way to produce. in principle. infinite sets of conserved
quantities which comes from the folowing property of the linear systems that
we used. When the linear system is integrable. i.c. when Yang-Mills or Einstein
cquations are satisfied. one can construct with two solutions Py, of the hinear
system. a closed (1 — 1)-form Wi py) (e by ¥4 conserved current JHg ).
which is bilinear and local in ¥, 5. and such that its restriction to a local Cauchy
surface does only depend on ¢, and ¢, through their local Cauchy data on the
surface: so by fixing sets of independent Cauchy data for the linear system one
obtains a (infinite) set of conserved quantitics that only depend on the coelfi-
cients of the linear equation. i.e. on Yang-Mills or Einstein ficlds. Considering
Yang-Mills or Einstein equations as dynamical systems one may try to compute
the Porsson bracket ot these conserved quantities and to exhibit the corresponding
Lie algebra. Practically. however. this is very difficult because all these svstems are
systems with constraints, so onc must use the whole machinery to deal with
such systems both at the level of the linear systems and at the level of the (non-
-lincar) Yang-Mills or Einstein systems. Work in this direction is currently in
progress.

There is another aspect of the interpretation of Yang-Mills and Einstein equa-
tions in terms of integrability condition. which was pointed out in a previous
work [3] and was then used to generalise to the coupled Yang-Mills charged field
equations and to the coupled gravitation-matter field equations the above discus-
sion: it is the interplay between these integrability problems and the invariance
by «infinite groups» (or pseudogroups). namely gauge invariance and invariance
by diffecomorphism. For instance, the frec Einstein equations, Ric (g) = 0O, are the
Euler-Lagrange equations corresponding to the functional g — 5 = j’g““l\’m(g’) vol.
this functional is invariant by diffeomorphism which leads to the identity

1 ; . . ,
Vl\g’\“ Rw‘- = gwg“‘“lx’w = 0 via the second Noether theorem [19]. Taking the

derivative of this identity written for g 4 1/ at ¢t = 0, one obtains an identity
connecting first derivatives of L (i.e. j!» L) with the Ricci tensor [3. 5] and it is
this very identity which implies that W;(R(“): R is cquivalent to Ric(g) = 0.
where R = kerpy (L), R'™W = kerp,(jlo L), Similar considerations apphy 1o
Einstcin-matter ﬁhcld equations whiéh also come from actions invariant by dif-
feomorphisms. For Yang-Mills equations and coupled Yang-Mills-charged ficld
cquations, the role of diffeomorphisms is played by the gauge transformations.
Notice that gauge transformations are diffcomorphisms of special kimd of the
appropriate principal bundle and it is known that. there. the Yang-Mills current
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may be interpreted as a part of Ricci tensor [20, 21].
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